A. Yu. Pavlikov, S. V. Saikova, A. S. Samoilo, D. V. Karpov, S. A. Novikova
{"title":"阴离子交换树脂辅助沉淀法合成氧化铜(II)纳米粒子并生产其稳定的水溶液","authors":"A. Yu. Pavlikov, S. V. Saikova, A. S. Samoilo, D. V. Karpov, S. A. Novikova","doi":"10.1134/s0036023623603057","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Copper(II) oxide nanoparticles are promising materials for use in catalysis, biomedicine, and photovoltaics. They can also be used to prepare nanocomposites and hybrid nanoparticles. This paper presents a new one-pot method for preparing CuO nanoparticles without long-term washing and heat treatment. The proposed anion-exchange precipitation is a facile and fast process, and is easily reproducible under standard laboratory conditions. Anion-exchange precipitation of copper from copper chloride or copper sulfate solutions in the presence of the polysaccharide dextran-40 produces well-crystallized hydroxychloride Cu<sub>2</sub>Cl(OH)<sub>3</sub> and hydroxysulfate Cu<sub>4</sub>(SO<sub>4</sub>)(OH)<sub>6,</sub> respectively; from copper nitrate solutions, a poorly crystallized Cu(OH)<sub>2</sub> phase is formed. In the absence of polysaccharides, the product is copper oxide nanoparticles regardless of the anion in the precursor salt. The thus-prepared materials were used to prepare hydrosols. The hydrosols had high aggregation and sedimentation stability over a wide pH range (from 5 to 11) as shown by dynamic and electrophoretic light scattering. They were stable for more than three months at a concentration of 2 g/L (the average hydrodynamic diameter of the particles was 245 nm; the average ζ-potential was –31.1 mV). The optical and electronic properties of the prepared hydrosols imply that they could be of interest for use in photocatalysis and in optoelectronic devices.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"96 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Copper(II) Oxide Nanoparticles by Anion-Exchange Resin-Assisted Precipitation and Production of Their Stable Hydrosols\",\"authors\":\"A. Yu. Pavlikov, S. V. Saikova, A. S. Samoilo, D. V. Karpov, S. A. Novikova\",\"doi\":\"10.1134/s0036023623603057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Copper(II) oxide nanoparticles are promising materials for use in catalysis, biomedicine, and photovoltaics. They can also be used to prepare nanocomposites and hybrid nanoparticles. This paper presents a new one-pot method for preparing CuO nanoparticles without long-term washing and heat treatment. The proposed anion-exchange precipitation is a facile and fast process, and is easily reproducible under standard laboratory conditions. Anion-exchange precipitation of copper from copper chloride or copper sulfate solutions in the presence of the polysaccharide dextran-40 produces well-crystallized hydroxychloride Cu<sub>2</sub>Cl(OH)<sub>3</sub> and hydroxysulfate Cu<sub>4</sub>(SO<sub>4</sub>)(OH)<sub>6,</sub> respectively; from copper nitrate solutions, a poorly crystallized Cu(OH)<sub>2</sub> phase is formed. In the absence of polysaccharides, the product is copper oxide nanoparticles regardless of the anion in the precursor salt. The thus-prepared materials were used to prepare hydrosols. The hydrosols had high aggregation and sedimentation stability over a wide pH range (from 5 to 11) as shown by dynamic and electrophoretic light scattering. They were stable for more than three months at a concentration of 2 g/L (the average hydrodynamic diameter of the particles was 245 nm; the average ζ-potential was –31.1 mV). The optical and electronic properties of the prepared hydrosols imply that they could be of interest for use in photocatalysis and in optoelectronic devices.</p>\",\"PeriodicalId\":762,\"journal\":{\"name\":\"Russian Journal of Inorganic Chemistry\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0036023623603057\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0036023623603057","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis of Copper(II) Oxide Nanoparticles by Anion-Exchange Resin-Assisted Precipitation and Production of Their Stable Hydrosols
Abstract
Copper(II) oxide nanoparticles are promising materials for use in catalysis, biomedicine, and photovoltaics. They can also be used to prepare nanocomposites and hybrid nanoparticles. This paper presents a new one-pot method for preparing CuO nanoparticles without long-term washing and heat treatment. The proposed anion-exchange precipitation is a facile and fast process, and is easily reproducible under standard laboratory conditions. Anion-exchange precipitation of copper from copper chloride or copper sulfate solutions in the presence of the polysaccharide dextran-40 produces well-crystallized hydroxychloride Cu2Cl(OH)3 and hydroxysulfate Cu4(SO4)(OH)6, respectively; from copper nitrate solutions, a poorly crystallized Cu(OH)2 phase is formed. In the absence of polysaccharides, the product is copper oxide nanoparticles regardless of the anion in the precursor salt. The thus-prepared materials were used to prepare hydrosols. The hydrosols had high aggregation and sedimentation stability over a wide pH range (from 5 to 11) as shown by dynamic and electrophoretic light scattering. They were stable for more than three months at a concentration of 2 g/L (the average hydrodynamic diameter of the particles was 245 nm; the average ζ-potential was –31.1 mV). The optical and electronic properties of the prepared hydrosols imply that they could be of interest for use in photocatalysis and in optoelectronic devices.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.