VidMuse:具有长期短期建模功能的简单视频音乐生成框架

Zeyue Tian, Zhaoyang Liu, Ruibin Yuan, Jiahao Pan, Xiaoqiang Huang, Qifeng Liu, Xu Tan, Qifeng Chen, Wei Xue, Yike Guo
{"title":"VidMuse:具有长期短期建模功能的简单视频音乐生成框架","authors":"Zeyue Tian, Zhaoyang Liu, Ruibin Yuan, Jiahao Pan, Xiaoqiang Huang, Qifeng Liu, Xu Tan, Qifeng Chen, Wei Xue, Yike Guo","doi":"arxiv-2406.04321","DOIUrl":null,"url":null,"abstract":"In this work, we systematically study music generation conditioned solely on\nthe video. First, we present a large-scale dataset comprising 190K video-music\npairs, including various genres such as movie trailers, advertisements, and\ndocumentaries. Furthermore, we propose VidMuse, a simple framework for\ngenerating music aligned with video inputs. VidMuse stands out by producing\nhigh-fidelity music that is both acoustically and semantically aligned with the\nvideo. By incorporating local and global visual cues, VidMuse enables the\ncreation of musically coherent audio tracks that consistently match the video\ncontent through Long-Short-Term modeling. Through extensive experiments,\nVidMuse outperforms existing models in terms of audio quality, diversity, and\naudio-visual alignment. The code and datasets will be available at\nhttps://github.com/ZeyueT/VidMuse/.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling\",\"authors\":\"Zeyue Tian, Zhaoyang Liu, Ruibin Yuan, Jiahao Pan, Xiaoqiang Huang, Qifeng Liu, Xu Tan, Qifeng Chen, Wei Xue, Yike Guo\",\"doi\":\"arxiv-2406.04321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we systematically study music generation conditioned solely on\\nthe video. First, we present a large-scale dataset comprising 190K video-music\\npairs, including various genres such as movie trailers, advertisements, and\\ndocumentaries. Furthermore, we propose VidMuse, a simple framework for\\ngenerating music aligned with video inputs. VidMuse stands out by producing\\nhigh-fidelity music that is both acoustically and semantically aligned with the\\nvideo. By incorporating local and global visual cues, VidMuse enables the\\ncreation of musically coherent audio tracks that consistently match the video\\ncontent through Long-Short-Term modeling. Through extensive experiments,\\nVidMuse outperforms existing models in terms of audio quality, diversity, and\\naudio-visual alignment. The code and datasets will be available at\\nhttps://github.com/ZeyueT/VidMuse/.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.04321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们系统地研究了仅以视频为条件的音乐生成。首先,我们提供了一个包含 190K 对视频音乐的大型数据集,其中包括电影预告片、广告和纪录片等各种类型。此外,我们还提出了 VidMuse,这是一个根据视频输入生成音乐的简单框架。VidMuse 的突出之处在于它能生成与视频在声学和语义上都一致的高保真音乐。VidMuse 结合了局部和全局视觉线索,通过长短期建模,能够创建与视频内容一致的音乐连贯音轨。通过广泛的实验,VidMuse 在音频质量、多样性和音视频一致性方面都优于现有模型。有关代码和数据集可从以下网址获取:https://github.com/ZeyueT/VidMuse/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 190K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets will be available at https://github.com/ZeyueT/VidMuse/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1