泥炭地与植被之间广泛的碳循环:中国西北部中侏罗世高净初级生产力的启示

{"title":"泥炭地与植被之间广泛的碳循环:中国西北部中侏罗世高净初级生产力的启示","authors":"","doi":"10.1016/j.jop.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>Peatlands have obvious carbon storage capacity and are crucial in mitigating global climate change. As the end-product of peatlands, coals have preserved a large amount of palaeoenvironmental information. The carbon accumulation rate and the net primary productivity (NPP) of coal-forming peatlands can be used as proxies for recovering palaeoenvironments. A super-thick coal seam (42°35′N, 91°25′E) was developed in the Middle Jurassic Xishanyao Formation in the Shaerhu coalfield in the southern margin of the Tuha (Turpan-Hami) Basin, northwestern China. In this study, we use the time series analysis to identify the periods of Milankovitch orbital cycles in the Gamma-ray curve of this super-thick (124.85 m) coal and then use the obtained cycle periods of 405 ka, 173 ka, 44 ka, 37.6 ka, 22.5 ka to calculate the timeframe of the coal-forming peatlands which ranges from 2703.44 to 2975.11 ka. Considering that the carbon content of the coal seam is 78.32% and the carbon loss during the coalification is about 25.80%, the carbon accumulation rate of the targeted coal seam is estimated to be 58.47–64.34 g C/m<sup>2</sup>·a, and the NPP is estimated to be 252.28–277.63 g C/m<sup>2</sup>·a. The main palaeoenvironmental factors controlling the NPP of peatlands are CO<sub>2</sub> content, palaeolatitude and palaeotemperature. The reduced NPP values of the palaeo-peatlands in the Shaerhu coalfield can be attributed to the mid-palaeolatitude and/or too low atmospheric CO<sub>2</sub> contents. To a certain extent, the NPP of palaeo-peatlands reflects the changes in atmospheric CO<sub>2</sub>, which can further reveal the dynamic response of the global carbon cycle to climate change. Therefore, predicting the level of NPP in the Middle Jurassic and studying the final destination of carbon in the ecosystem are beneficial to understanding the coal-forming process and palaeoenvironment.</div></div>","PeriodicalId":100819,"journal":{"name":"Journal of Palaeogeography","volume":"13 4","pages":"Pages 1016-1028"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensive carbon cycle between peatland and vegetation: Insights from high net primary productivity of the Middle Jurassic in northwestern China\",\"authors\":\"\",\"doi\":\"10.1016/j.jop.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peatlands have obvious carbon storage capacity and are crucial in mitigating global climate change. As the end-product of peatlands, coals have preserved a large amount of palaeoenvironmental information. The carbon accumulation rate and the net primary productivity (NPP) of coal-forming peatlands can be used as proxies for recovering palaeoenvironments. A super-thick coal seam (42°35′N, 91°25′E) was developed in the Middle Jurassic Xishanyao Formation in the Shaerhu coalfield in the southern margin of the Tuha (Turpan-Hami) Basin, northwestern China. In this study, we use the time series analysis to identify the periods of Milankovitch orbital cycles in the Gamma-ray curve of this super-thick (124.85 m) coal and then use the obtained cycle periods of 405 ka, 173 ka, 44 ka, 37.6 ka, 22.5 ka to calculate the timeframe of the coal-forming peatlands which ranges from 2703.44 to 2975.11 ka. Considering that the carbon content of the coal seam is 78.32% and the carbon loss during the coalification is about 25.80%, the carbon accumulation rate of the targeted coal seam is estimated to be 58.47–64.34 g C/m<sup>2</sup>·a, and the NPP is estimated to be 252.28–277.63 g C/m<sup>2</sup>·a. The main palaeoenvironmental factors controlling the NPP of peatlands are CO<sub>2</sub> content, palaeolatitude and palaeotemperature. The reduced NPP values of the palaeo-peatlands in the Shaerhu coalfield can be attributed to the mid-palaeolatitude and/or too low atmospheric CO<sub>2</sub> contents. To a certain extent, the NPP of palaeo-peatlands reflects the changes in atmospheric CO<sub>2</sub>, which can further reveal the dynamic response of the global carbon cycle to climate change. Therefore, predicting the level of NPP in the Middle Jurassic and studying the final destination of carbon in the ecosystem are beneficial to understanding the coal-forming process and palaeoenvironment.</div></div>\",\"PeriodicalId\":100819,\"journal\":{\"name\":\"Journal of Palaeogeography\",\"volume\":\"13 4\",\"pages\":\"Pages 1016-1028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Palaeogeography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209538362400066X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Palaeogeography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209538362400066X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

泥炭地具有明显的碳储存能力,对减缓全球气候变化至关重要。作为泥炭地的最终产物,煤炭保存了大量的古环境信息。成煤泥炭地的碳积累率和净初级生产力(NPP)可作为复原古环境的代用指标。中国西北吐哈(吐鲁番-哈密)盆地南缘沙尔湖煤田中侏罗世西山窑地层发育有超厚煤层(42°35′N,91°25′E)。本研究通过时间序列分析,确定了该超厚(124.85 m)煤层伽马射线曲线中的米兰科维奇轨道周期,并利用所得到的405 ka、173 ka、44 ka、37.6 ka、22.5 ka周期,计算出该煤层形成泥炭地的时间范围为2703.44-2975.11 ka。考虑到煤层的含碳量为 78.32%,煤化过程中的碳损失约为 25.80%,估算目标煤层的碳积累率为 58.47-64.34 g C/m-a,NPP 为 252.28-277.63 g C/m-a。控制泥炭地 NPP 的主要古环境因素是 CO 含量、古纬度和古温度。沙尔湖煤田古泥炭地NPP值的降低可归因于中古纬度和/或过低的大气CO含量。古高原NPP在一定程度上反映了大气CO的变化,可以进一步揭示全球碳循环对气候变化的动态响应。因此,预测中侏罗世的NPP水平,研究生态系统中碳的最终去向,有利于了解成煤过程和古环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extensive carbon cycle between peatland and vegetation: Insights from high net primary productivity of the Middle Jurassic in northwestern China
Peatlands have obvious carbon storage capacity and are crucial in mitigating global climate change. As the end-product of peatlands, coals have preserved a large amount of palaeoenvironmental information. The carbon accumulation rate and the net primary productivity (NPP) of coal-forming peatlands can be used as proxies for recovering palaeoenvironments. A super-thick coal seam (42°35′N, 91°25′E) was developed in the Middle Jurassic Xishanyao Formation in the Shaerhu coalfield in the southern margin of the Tuha (Turpan-Hami) Basin, northwestern China. In this study, we use the time series analysis to identify the periods of Milankovitch orbital cycles in the Gamma-ray curve of this super-thick (124.85 m) coal and then use the obtained cycle periods of 405 ka, 173 ka, 44 ka, 37.6 ka, 22.5 ka to calculate the timeframe of the coal-forming peatlands which ranges from 2703.44 to 2975.11 ka. Considering that the carbon content of the coal seam is 78.32% and the carbon loss during the coalification is about 25.80%, the carbon accumulation rate of the targeted coal seam is estimated to be 58.47–64.34 g C/m2·a, and the NPP is estimated to be 252.28–277.63 g C/m2·a. The main palaeoenvironmental factors controlling the NPP of peatlands are CO2 content, palaeolatitude and palaeotemperature. The reduced NPP values of the palaeo-peatlands in the Shaerhu coalfield can be attributed to the mid-palaeolatitude and/or too low atmospheric CO2 contents. To a certain extent, the NPP of palaeo-peatlands reflects the changes in atmospheric CO2, which can further reveal the dynamic response of the global carbon cycle to climate change. Therefore, predicting the level of NPP in the Middle Jurassic and studying the final destination of carbon in the ecosystem are beneficial to understanding the coal-forming process and palaeoenvironment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-temporal variability in microfossil and geochemical records of Cenomanian-Turonian oceanic anoxic event-2: a review A combined tectono-climatic control on Holocene sedimentation in Ladakh Himalaya, India: Clues from Anisotropy of Magnetic Susceptibility (AMS) of lake sediments Evolution of Neoproterozoic siliciclastic Kerur Formation in the light of sequence stratigraphic framework: Badami Basin, Karnataka, India Extensive carbon cycle between peatland and vegetation: Insights from high net primary productivity of the Middle Jurassic in northwestern China A remarkable decade of learning and sharing knowledge through the Journal of Palaeogeography (JoP) (2014–2024): Reminiscences from an Associate Editor-in-Chief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1