用于改进氧进化反应的生物牛血清白蛋白/Zn3(PO4)2/Cr2O3 混合电催化剂

Ritu Raj, Imtiaz Ahmed, Vikash Kumar, Gajendra Prasad Singh and Krishna Kanta Haldar
{"title":"用于改进氧进化反应的生物牛血清白蛋白/Zn3(PO4)2/Cr2O3 混合电催化剂","authors":"Ritu Raj, Imtiaz Ahmed, Vikash Kumar, Gajendra Prasad Singh and Krishna Kanta Haldar","doi":"10.1088/2632-959x/ad5b7a","DOIUrl":null,"url":null,"abstract":"The fabrication of nanostructured protein-inorganic hybrid materials is crucial for the development of advanced multifunctional materials. Protein-inorganic mesoporous composites are gaining attention due to their remarkable properties, including large surface areas and active surface functional groups. We have successfully synthesized mesoporous BSA/Zn3(PO4)2/Cr2O3 catalysts to improve the kinetics of the oxygen evolution reaction (OER) in electrocatalytic water splitting for sustainable energy generation. This approach utilizes BSA in the synthesis process and is environmentally friendly. By adjusting the BSA quantity, we could control the yield of BSA/Zn3(PO4)2/Cr2O3 mesoporous. We employed various techniques, including FE-SEM, XRD, and FTIR, to analyze the morphology and structural characteristics of the biogenic BSA/Zn3(PO4)2/Cr2O3 electrocatalyst. Our comprehensive evaluation of the electrocatalytic OER activity of the BSA/Zn3(PO4)2/Cr2O3 hybrid structure demonstrated its remarkable performance. The biologically synthesized catalyst exhibited exceptional OER efficiency, maintaining a high current density of 10 mA cm−2 at very low overpotentials (only 216 mV) under alkaline conditions. The elongated peptide backbone of BSA significantly facilitated ion and electron transport, contributing to improved OER activity. The synergistic interaction between various amino acids from BSA and the metal ions within Zn3(PO4)2/Cr2O3 can be attributed to this enhancement, highlighting the potential of this hybrid structure in electrocatalytic OER applications.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic Bovine Serum Albumin/Zn3(PO4)2/Cr2O3 hybrid electrocatalyst for improved oxygen evolution reaction\",\"authors\":\"Ritu Raj, Imtiaz Ahmed, Vikash Kumar, Gajendra Prasad Singh and Krishna Kanta Haldar\",\"doi\":\"10.1088/2632-959x/ad5b7a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fabrication of nanostructured protein-inorganic hybrid materials is crucial for the development of advanced multifunctional materials. Protein-inorganic mesoporous composites are gaining attention due to their remarkable properties, including large surface areas and active surface functional groups. We have successfully synthesized mesoporous BSA/Zn3(PO4)2/Cr2O3 catalysts to improve the kinetics of the oxygen evolution reaction (OER) in electrocatalytic water splitting for sustainable energy generation. This approach utilizes BSA in the synthesis process and is environmentally friendly. By adjusting the BSA quantity, we could control the yield of BSA/Zn3(PO4)2/Cr2O3 mesoporous. We employed various techniques, including FE-SEM, XRD, and FTIR, to analyze the morphology and structural characteristics of the biogenic BSA/Zn3(PO4)2/Cr2O3 electrocatalyst. Our comprehensive evaluation of the electrocatalytic OER activity of the BSA/Zn3(PO4)2/Cr2O3 hybrid structure demonstrated its remarkable performance. The biologically synthesized catalyst exhibited exceptional OER efficiency, maintaining a high current density of 10 mA cm−2 at very low overpotentials (only 216 mV) under alkaline conditions. The elongated peptide backbone of BSA significantly facilitated ion and electron transport, contributing to improved OER activity. The synergistic interaction between various amino acids from BSA and the metal ions within Zn3(PO4)2/Cr2O3 can be attributed to this enhancement, highlighting the potential of this hybrid structure in electrocatalytic OER applications.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad5b7a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad5b7a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制备纳米结构的蛋白质-无机杂化材料对于开发先进的多功能材料至关重要。蛋白质-无机介孔复合材料因其大比表面积和表面活性官能团等显著特性而备受关注。我们成功合成了介孔 BSA/Zn3(PO4)2/Cr2O3 催化剂,以改善电催化水分离过程中氧进化反应(OER)的动力学,从而实现可持续能源生产。这种方法在合成过程中利用了 BSA,并且对环境友好。通过调整 BSA 的用量,我们可以控制 BSA/Zn3(PO4)2/Cr2O3 介孔的产率。我们采用 FE-SEM、XRD 和 FTIR 等多种技术分析了生物源 BSA/Zn3(PO4)2/Cr2O3 电催化剂的形态和结构特征。我们对 BSA/Zn3(PO4)2/Cr2O3杂化结构的电催化 OER 活性进行了全面评估,结果表明其性能显著。这种生物合成的催化剂具有卓越的 OER 效率,在碱性条件下,过电位很低(仅 216 mV),却能保持 10 mA cm-2 的高电流密度。BSA 的拉长肽骨显著促进了离子和电子的传输,有助于提高 OER 活性。BSA 中的各种氨基酸与 Zn3(PO4)2/Cr2O3 中的金属离子之间的协同作用可归因于这种增强作用,凸显了这种杂化结构在电催化 OER 应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogenic Bovine Serum Albumin/Zn3(PO4)2/Cr2O3 hybrid electrocatalyst for improved oxygen evolution reaction
The fabrication of nanostructured protein-inorganic hybrid materials is crucial for the development of advanced multifunctional materials. Protein-inorganic mesoporous composites are gaining attention due to their remarkable properties, including large surface areas and active surface functional groups. We have successfully synthesized mesoporous BSA/Zn3(PO4)2/Cr2O3 catalysts to improve the kinetics of the oxygen evolution reaction (OER) in electrocatalytic water splitting for sustainable energy generation. This approach utilizes BSA in the synthesis process and is environmentally friendly. By adjusting the BSA quantity, we could control the yield of BSA/Zn3(PO4)2/Cr2O3 mesoporous. We employed various techniques, including FE-SEM, XRD, and FTIR, to analyze the morphology and structural characteristics of the biogenic BSA/Zn3(PO4)2/Cr2O3 electrocatalyst. Our comprehensive evaluation of the electrocatalytic OER activity of the BSA/Zn3(PO4)2/Cr2O3 hybrid structure demonstrated its remarkable performance. The biologically synthesized catalyst exhibited exceptional OER efficiency, maintaining a high current density of 10 mA cm−2 at very low overpotentials (only 216 mV) under alkaline conditions. The elongated peptide backbone of BSA significantly facilitated ion and electron transport, contributing to improved OER activity. The synergistic interaction between various amino acids from BSA and the metal ions within Zn3(PO4)2/Cr2O3 can be attributed to this enhancement, highlighting the potential of this hybrid structure in electrocatalytic OER applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, characterization and magneto-structural properties of geometrical and compositional modulated nanowires A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects Structure and optical properties of ZnxCd1-xS and Cu:ZnxCd1-xS templated on DNA molecules Lycium ruthenicum stem extract mediated green synthesis of MnO2/Mn3(PO4)2 composite nanowire electrocatalyst for oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1