{"title":"预测 (La2MnNiO6)x / (La2MnCoO6)1-x 复合材料磁性和磁致性的现象学方法","authors":"Abderrazak Boubekri, Zakaria Elmaddahi, Younes Jarmoumi, Karima Gueddouch, Abdeslam Farchakh, Mohamed EL Hafidi","doi":"10.1007/s10948-024-06777-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have investigated the magnetic and magnetocaloric characteristics of a La<sub>2</sub>MnNiO<sub>6</sub> composite, in conjunction with La<sub>2</sub>MnCoO<sub>6</sub>. This composite consists of two phases of double perovskite materials. Employing the mean-field approximation, we successfully modeled how magnetization and the change in magnetic entropy vary with temperature under different magnetic fields in our samples. This phenomenological model helped us also plot the maximum magnetic entropy change (-ΔS<sub>M</sub>)<sub>max</sub>, full width at half-maximum δT<sub>FWHM</sub>, and relative cooling power (RCP). Our analysis has revealed an optimal plateau-type magnetocaloric effect near room temperature, corresponding to a specific composition <i>x</i> between 0.2 and 0.5. Ultimately, this theoretical model lets us predict the magnetic and magnetocaloric behavior of composite materials, providing a foundation for future studies.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1401 - 1410"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phenomenological Approach for Predicting Magnetic and Magnetocaloric Properties in the (La2MnNiO6)x / (La2MnCoO6)1−x Composite\",\"authors\":\"Abderrazak Boubekri, Zakaria Elmaddahi, Younes Jarmoumi, Karima Gueddouch, Abdeslam Farchakh, Mohamed EL Hafidi\",\"doi\":\"10.1007/s10948-024-06777-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we have investigated the magnetic and magnetocaloric characteristics of a La<sub>2</sub>MnNiO<sub>6</sub> composite, in conjunction with La<sub>2</sub>MnCoO<sub>6</sub>. This composite consists of two phases of double perovskite materials. Employing the mean-field approximation, we successfully modeled how magnetization and the change in magnetic entropy vary with temperature under different magnetic fields in our samples. This phenomenological model helped us also plot the maximum magnetic entropy change (-ΔS<sub>M</sub>)<sub>max</sub>, full width at half-maximum δT<sub>FWHM</sub>, and relative cooling power (RCP). Our analysis has revealed an optimal plateau-type magnetocaloric effect near room temperature, corresponding to a specific composition <i>x</i> between 0.2 and 0.5. Ultimately, this theoretical model lets us predict the magnetic and magnetocaloric behavior of composite materials, providing a foundation for future studies.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"37 8-10\",\"pages\":\"1401 - 1410\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06777-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06777-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A Phenomenological Approach for Predicting Magnetic and Magnetocaloric Properties in the (La2MnNiO6)x / (La2MnCoO6)1−x Composite
In this paper, we have investigated the magnetic and magnetocaloric characteristics of a La2MnNiO6 composite, in conjunction with La2MnCoO6. This composite consists of two phases of double perovskite materials. Employing the mean-field approximation, we successfully modeled how magnetization and the change in magnetic entropy vary with temperature under different magnetic fields in our samples. This phenomenological model helped us also plot the maximum magnetic entropy change (-ΔSM)max, full width at half-maximum δTFWHM, and relative cooling power (RCP). Our analysis has revealed an optimal plateau-type magnetocaloric effect near room temperature, corresponding to a specific composition x between 0.2 and 0.5. Ultimately, this theoretical model lets us predict the magnetic and magnetocaloric behavior of composite materials, providing a foundation for future studies.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.