利用介质阻挡放电阱通过光化学蒸汽发生去除土壤中的汞

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES Journal of Soils and Sediments Pub Date : 2024-07-05 DOI:10.1007/s11368-024-03851-5
Yue Luo, Wenchao Huang, Fujian Xu, Xinfeng Zhang, Shentao Yang, Jin Luo
{"title":"利用介质阻挡放电阱通过光化学蒸汽发生去除土壤中的汞","authors":"Yue Luo, Wenchao Huang, Fujian Xu, Xinfeng Zhang, Shentao Yang, Jin Luo","doi":"10.1007/s11368-024-03851-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Most forms of Mercury (Hg) in soil have significant destructive effect on ecosystems and food safety because of enormous toxicity. The existing treatment methods have drawbacks such as high energy consumption, complex operation, long remediation cycle, and secondary pollution. Therefore, this study aims to develop a governance method with low energy consumption, simple operation, short execution cycle, and no secondary pollution.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A new system was set up to remove leachable Hg<sup>2+</sup> from soil and its performance was evaluated. The system consisted of photochemical vapor generator (PVG, for Hg<sup>2+</sup> removal), dielectric barrier discharge (DBD) trapping reactor (for collection of removed Hg<sup>0</sup>). In the presence of organic acids, leachable Hg<sup>2+</sup> was converted to gaseous Hg<sup>0</sup> by UV irradiation in the PVG, and transported to the DBD trap by air for collection of the removed Hg<sup>2+</sup>. Soil samples in PVG were taken into glass tubes at specific time and then added aqua regia, analyzed using ICP-MS after digested in a boiling water bath. The performance of DBD trap was analyzed by connecting with ICP-MS.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>This study achieved the removal of leachable Hg<sup>2+</sup> from soil under the UV excitation, the subsequent conversion of escaped gaseous Hg<sup>0</sup> to solid and enrichment in DBD trap. The factors affecting the efficiencies of photochemical reaction, transport and collection were carefully investigated. Under the optimized conditions, the removal efficiency of 2.00 mg L<sup>−1</sup> leachable Hg<sup>2+</sup> in soil reached 95.0% within 1 h. Even in the presence of 15 interfering ions separately containing 50 mg L<sup>−1</sup>, good remediation effects can still be achieved. The capture rate of gaseous Hg<sup>0</sup> by DBD trap is close to 100%. The system can achieve Hg pollution control in 10 types of soil, demonstrating great promotion value.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This system utilizes PVG theory and DBD low-temperature plasma device to construct a safe, green, simple, and inexpensive method for removing leachable Hg<sup>2+</sup> from soil.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of mercury from soil by photochemical vapor generation with dielectric barrier discharge trap\",\"authors\":\"Yue Luo, Wenchao Huang, Fujian Xu, Xinfeng Zhang, Shentao Yang, Jin Luo\",\"doi\":\"10.1007/s11368-024-03851-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Most forms of Mercury (Hg) in soil have significant destructive effect on ecosystems and food safety because of enormous toxicity. The existing treatment methods have drawbacks such as high energy consumption, complex operation, long remediation cycle, and secondary pollution. Therefore, this study aims to develop a governance method with low energy consumption, simple operation, short execution cycle, and no secondary pollution.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>A new system was set up to remove leachable Hg<sup>2+</sup> from soil and its performance was evaluated. The system consisted of photochemical vapor generator (PVG, for Hg<sup>2+</sup> removal), dielectric barrier discharge (DBD) trapping reactor (for collection of removed Hg<sup>0</sup>). In the presence of organic acids, leachable Hg<sup>2+</sup> was converted to gaseous Hg<sup>0</sup> by UV irradiation in the PVG, and transported to the DBD trap by air for collection of the removed Hg<sup>2+</sup>. Soil samples in PVG were taken into glass tubes at specific time and then added aqua regia, analyzed using ICP-MS after digested in a boiling water bath. The performance of DBD trap was analyzed by connecting with ICP-MS.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>This study achieved the removal of leachable Hg<sup>2+</sup> from soil under the UV excitation, the subsequent conversion of escaped gaseous Hg<sup>0</sup> to solid and enrichment in DBD trap. The factors affecting the efficiencies of photochemical reaction, transport and collection were carefully investigated. Under the optimized conditions, the removal efficiency of 2.00 mg L<sup>−1</sup> leachable Hg<sup>2+</sup> in soil reached 95.0% within 1 h. Even in the presence of 15 interfering ions separately containing 50 mg L<sup>−1</sup>, good remediation effects can still be achieved. The capture rate of gaseous Hg<sup>0</sup> by DBD trap is close to 100%. The system can achieve Hg pollution control in 10 types of soil, demonstrating great promotion value.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>This system utilizes PVG theory and DBD low-temperature plasma device to construct a safe, green, simple, and inexpensive method for removing leachable Hg<sup>2+</sup> from soil.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03851-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03851-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的 土壤中大多数形式的汞(Hg)因其巨大的毒性而对生态系统和食品安全造成严重破坏。现有的治理方法存在能耗高、操作复杂、修复周期长、二次污染等缺点。因此,本研究旨在开发一种能耗低、操作简单、实施周期短、无二次污染的治理方法。该系统由光化学蒸汽发生器(PVG,用于去除 Hg2+)、介质阻挡放电(DBD)捕集反应器(用于收集去除的 Hg0)组成。在有机酸存在的情况下,可浸出的 Hg2+ 在 PVG 中通过紫外线照射转化为气态 Hg0,并通过空气输送到 DBD 捕集器收集去除的 Hg2+。在特定时间将 PVG 中的土壤样品放入玻璃管中,然后加入王水,在沸水浴中消化后使用 ICP-MS 进行分析。该研究实现了在紫外光激发下去除土壤中的可浸出 Hg2+,随后将逸散的气态 Hg0 转化为固态并富集到 DBD 捕集器中。对影响光化学反应、迁移和收集效率的因素进行了仔细研究。在优化条件下,土壤中 2.00 mg L-1 可浸出的 Hg2+ 在 1 h 内的去除率达到 95.0%,即使在分别含有 50 mg L-1 的 15 种干扰离子的情况下,仍能达到良好的修复效果。DBD 捕集器对气态 Hg0 的捕集率接近 100%。结论 本系统利用 PVG 理论和 DBD 低温等离子体装置,构建了一种安全、绿色、简单、廉价的去除土壤中可浸出 Hg2+ 的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of mercury from soil by photochemical vapor generation with dielectric barrier discharge trap

Purpose

Most forms of Mercury (Hg) in soil have significant destructive effect on ecosystems and food safety because of enormous toxicity. The existing treatment methods have drawbacks such as high energy consumption, complex operation, long remediation cycle, and secondary pollution. Therefore, this study aims to develop a governance method with low energy consumption, simple operation, short execution cycle, and no secondary pollution.

Methods

A new system was set up to remove leachable Hg2+ from soil and its performance was evaluated. The system consisted of photochemical vapor generator (PVG, for Hg2+ removal), dielectric barrier discharge (DBD) trapping reactor (for collection of removed Hg0). In the presence of organic acids, leachable Hg2+ was converted to gaseous Hg0 by UV irradiation in the PVG, and transported to the DBD trap by air for collection of the removed Hg2+. Soil samples in PVG were taken into glass tubes at specific time and then added aqua regia, analyzed using ICP-MS after digested in a boiling water bath. The performance of DBD trap was analyzed by connecting with ICP-MS.

Results

This study achieved the removal of leachable Hg2+ from soil under the UV excitation, the subsequent conversion of escaped gaseous Hg0 to solid and enrichment in DBD trap. The factors affecting the efficiencies of photochemical reaction, transport and collection were carefully investigated. Under the optimized conditions, the removal efficiency of 2.00 mg L−1 leachable Hg2+ in soil reached 95.0% within 1 h. Even in the presence of 15 interfering ions separately containing 50 mg L−1, good remediation effects can still be achieved. The capture rate of gaseous Hg0 by DBD trap is close to 100%. The system can achieve Hg pollution control in 10 types of soil, demonstrating great promotion value.

Conclusions

This system utilizes PVG theory and DBD low-temperature plasma device to construct a safe, green, simple, and inexpensive method for removing leachable Hg2+ from soil.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
期刊最新文献
Integrating soil phosphorus sorption capacity with agronomic indices to improve sustainable P use in agriculture Metal pollution in sediments along the Montenegrin coast, Adriatic Sea: a risk analysis Effects of rill morphology characteristics on particle size selectivity using indoor simulation experiments with two types of soil from the Loess Plateau Isotope signature and ecoenzymatic stoichiometry as key indicators of urban soil functionality Pollution of a Black Sea coastal city: potentially toxic elements in urban soils, road dust, and their PM10 fractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1