{"title":"具有尖锐内层的偏微分方程的变换模型还原","authors":"Tianyou Tang, Xianmin Xu","doi":"10.1137/23m1589980","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2178-A2201, August 2024. <br/> Abstract. Small parameters in partial differential equations can give rise to solutions with sharp inner layers that evolve over time. However, the standard model reduction method becomes inefficient when applied to these problems due to the slow decaying Kolmogorov [math]-width of the solution manifold. To address this issue, a natural approach is to transform the equation in such a way that the transformed solution manifold exhibits a fast decaying Kolmogorov [math]-width. In this paper, we focus on the Allen–Cahn equation as a model problem. We employ asymptotic analysis to identify slow variables and perform a transformation of the partial differential equations accordingly. Subsequently, we apply the proper orthogonal decomposition method and a QR discrete empirical interpolation method (qDEIM) technique to the transformed equation with the slow variables. Numerical experiments demonstrate that the new model reduction method yields significantly improved results compared to direct model reduction applied to the original equation. Furthermore, this approach can be extended to other equations, such as the convection equation and the Burgers equation. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/toreanony/TransformedModelReduction and in the supplementary materials (TransformedModelReduction-master.zip [19.1KB]).","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformed Model Reduction for Partial Differential Equations with Sharp Inner Layers\",\"authors\":\"Tianyou Tang, Xianmin Xu\",\"doi\":\"10.1137/23m1589980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2178-A2201, August 2024. <br/> Abstract. Small parameters in partial differential equations can give rise to solutions with sharp inner layers that evolve over time. However, the standard model reduction method becomes inefficient when applied to these problems due to the slow decaying Kolmogorov [math]-width of the solution manifold. To address this issue, a natural approach is to transform the equation in such a way that the transformed solution manifold exhibits a fast decaying Kolmogorov [math]-width. In this paper, we focus on the Allen–Cahn equation as a model problem. We employ asymptotic analysis to identify slow variables and perform a transformation of the partial differential equations accordingly. Subsequently, we apply the proper orthogonal decomposition method and a QR discrete empirical interpolation method (qDEIM) technique to the transformed equation with the slow variables. Numerical experiments demonstrate that the new model reduction method yields significantly improved results compared to direct model reduction applied to the original equation. Furthermore, this approach can be extended to other equations, such as the convection equation and the Burgers equation. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/toreanony/TransformedModelReduction and in the supplementary materials (TransformedModelReduction-master.zip [19.1KB]).\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1589980\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1589980","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Transformed Model Reduction for Partial Differential Equations with Sharp Inner Layers
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2178-A2201, August 2024. Abstract. Small parameters in partial differential equations can give rise to solutions with sharp inner layers that evolve over time. However, the standard model reduction method becomes inefficient when applied to these problems due to the slow decaying Kolmogorov [math]-width of the solution manifold. To address this issue, a natural approach is to transform the equation in such a way that the transformed solution manifold exhibits a fast decaying Kolmogorov [math]-width. In this paper, we focus on the Allen–Cahn equation as a model problem. We employ asymptotic analysis to identify slow variables and perform a transformation of the partial differential equations accordingly. Subsequently, we apply the proper orthogonal decomposition method and a QR discrete empirical interpolation method (qDEIM) technique to the transformed equation with the slow variables. Numerical experiments demonstrate that the new model reduction method yields significantly improved results compared to direct model reduction applied to the original equation. Furthermore, this approach can be extended to other equations, such as the convection equation and the Burgers equation. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/toreanony/TransformedModelReduction and in the supplementary materials (TransformedModelReduction-master.zip [19.1KB]).
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.