{"title":"通过软件自动化、数据科学和人工智能,开发、验证和实施增强型多孔、多靶点定量 PCR-HPV 基因分型分析。","authors":"","doi":"10.1016/j.jmoldx.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>The value of human papillomavirus (HPV) testing for cervical cancer screening is well established; however, its use as a primary screening option or as a reflex test after atypical cytology results is now gaining wider acceptance. The importance of full genotyping and viral load determination has been demonstrated to enhance the clinical understanding of the viral infection progression during follow-up or after treatment, thereby providing clinicians with supplementary tools for optimized patient management. We developed a new analysis method for the RIATOL quantitative PCR assay, and validated and implemented it in the laboratory of clinical molecular pathology at Algemeen Medisch Laboratorium (AML), under national accreditation and following the International Organization for Standardization guidelines. This study presents the successful validation of a high-throughput, multitarget HPV analysis method, with enhanced accuracy on both qualitative and quantitative end results. This is achieved by software standardization and automation of PCR curve analysis and interpretation, using data science and artificial intelligence. Moreover, the user-centric functionality of the platform was demonstrated to enhance both staff training and routine analysis workflows, thereby saving time and laboratory personnel resources. Overall, the integration of the FastFinder plugin semi-automatic analysis algorithm with the RIATOL real-time quantitative PCR assay proved to be a remarkable advancement in high-throughput HPV quantification, with demonstrated capability to provide highly accurate clinical-grade results and to reduce manual variability and analysis time.</p></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":"26 9","pages":"Pages 781-791"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1525157824001491/pdfft?md5=2946f126a90ecf1d060162a13b5d0172&pid=1-s2.0-S1525157824001491-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development, Validation, and Implementation of an Augmented Multiwell, Multitarget Quantitative PCR for the Analysis of Human Papillomavirus Genotyping through Software Automation, Data Science, and Artificial Intelligence\",\"authors\":\"\",\"doi\":\"10.1016/j.jmoldx.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The value of human papillomavirus (HPV) testing for cervical cancer screening is well established; however, its use as a primary screening option or as a reflex test after atypical cytology results is now gaining wider acceptance. The importance of full genotyping and viral load determination has been demonstrated to enhance the clinical understanding of the viral infection progression during follow-up or after treatment, thereby providing clinicians with supplementary tools for optimized patient management. We developed a new analysis method for the RIATOL quantitative PCR assay, and validated and implemented it in the laboratory of clinical molecular pathology at Algemeen Medisch Laboratorium (AML), under national accreditation and following the International Organization for Standardization guidelines. This study presents the successful validation of a high-throughput, multitarget HPV analysis method, with enhanced accuracy on both qualitative and quantitative end results. This is achieved by software standardization and automation of PCR curve analysis and interpretation, using data science and artificial intelligence. Moreover, the user-centric functionality of the platform was demonstrated to enhance both staff training and routine analysis workflows, thereby saving time and laboratory personnel resources. Overall, the integration of the FastFinder plugin semi-automatic analysis algorithm with the RIATOL real-time quantitative PCR assay proved to be a remarkable advancement in high-throughput HPV quantification, with demonstrated capability to provide highly accurate clinical-grade results and to reduce manual variability and analysis time.</p></div>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\"26 9\",\"pages\":\"Pages 781-791\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1525157824001491/pdfft?md5=2946f126a90ecf1d060162a13b5d0172&pid=1-s2.0-S1525157824001491-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1525157824001491\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157824001491","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Development, Validation, and Implementation of an Augmented Multiwell, Multitarget Quantitative PCR for the Analysis of Human Papillomavirus Genotyping through Software Automation, Data Science, and Artificial Intelligence
The value of human papillomavirus (HPV) testing for cervical cancer screening is well established; however, its use as a primary screening option or as a reflex test after atypical cytology results is now gaining wider acceptance. The importance of full genotyping and viral load determination has been demonstrated to enhance the clinical understanding of the viral infection progression during follow-up or after treatment, thereby providing clinicians with supplementary tools for optimized patient management. We developed a new analysis method for the RIATOL quantitative PCR assay, and validated and implemented it in the laboratory of clinical molecular pathology at Algemeen Medisch Laboratorium (AML), under national accreditation and following the International Organization for Standardization guidelines. This study presents the successful validation of a high-throughput, multitarget HPV analysis method, with enhanced accuracy on both qualitative and quantitative end results. This is achieved by software standardization and automation of PCR curve analysis and interpretation, using data science and artificial intelligence. Moreover, the user-centric functionality of the platform was demonstrated to enhance both staff training and routine analysis workflows, thereby saving time and laboratory personnel resources. Overall, the integration of the FastFinder plugin semi-automatic analysis algorithm with the RIATOL real-time quantitative PCR assay proved to be a remarkable advancement in high-throughput HPV quantification, with demonstrated capability to provide highly accurate clinical-grade results and to reduce manual variability and analysis time.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.