多波大流行与多期/多相流行:COVID-19 大流行的全球形态。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-05 DOI:10.1016/j.jtbi.2024.111881
{"title":"多波大流行与多期/多相流行:COVID-19 大流行的全球形态。","authors":"","doi":"10.1016/j.jtbi.2024.111881","DOIUrl":null,"url":null,"abstract":"<div><p>The overall course of the COVID-19 pandemic in Western countries has been characterized by complex sequences of phases. In the period before the arrival of vaccines, these phases were mainly due to the alternation between the strengthening/lifting of social distancing measures, with the aim to balance the protection of health and that of the society as a whole. After the arrival of vaccines, this multi-phasic character was further emphasized by the complicated deployment of vaccination campaigns and the onset of virus’ variants. To cope with this multi-phasic character, we propose a theoretical approach to the modeling of overall pandemic courses, that we term <em>multi-period/multi-phasic</em>, based on a specific definition of phase. This allows a unified and parsimonious representation of complex epidemic courses even when vaccination and virus’ variants are considered, through sequences of weak ergodic renewal equations that become fully ergodic when appropriate conditions are met. Specific hypotheses on epidemiological and intervention parameters allow reduction to simple models. The framework suggest a simple, theory driven, approach to data explanation that allows an accurate reproduction of the overall course of the COVID-19 epidemic in Italy since its beginning (February 2020) up to <em>omicron</em> onset, confirming the validity of the concept.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple pandemic waves vs multi-period/multi-phasic epidemics: Global shape of the COVID-19 pandemic\",\"authors\":\"\",\"doi\":\"10.1016/j.jtbi.2024.111881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The overall course of the COVID-19 pandemic in Western countries has been characterized by complex sequences of phases. In the period before the arrival of vaccines, these phases were mainly due to the alternation between the strengthening/lifting of social distancing measures, with the aim to balance the protection of health and that of the society as a whole. After the arrival of vaccines, this multi-phasic character was further emphasized by the complicated deployment of vaccination campaigns and the onset of virus’ variants. To cope with this multi-phasic character, we propose a theoretical approach to the modeling of overall pandemic courses, that we term <em>multi-period/multi-phasic</em>, based on a specific definition of phase. This allows a unified and parsimonious representation of complex epidemic courses even when vaccination and virus’ variants are considered, through sequences of weak ergodic renewal equations that become fully ergodic when appropriate conditions are met. Specific hypotheses on epidemiological and intervention parameters allow reduction to simple models. The framework suggest a simple, theory driven, approach to data explanation that allows an accurate reproduction of the overall course of the COVID-19 epidemic in Italy since its beginning (February 2020) up to <em>omicron</em> onset, confirming the validity of the concept.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324001656\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001656","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在西方国家,COVID-19 大流行病的整个过程呈现出复杂的阶段序列特征。在疫苗问世之前,这些阶段主要是由于加强/放松社会隔离措施之间的交替,目的是在保护健康和保护整个社会之间取得平衡。疫苗问世后,疫苗接种活动的复杂部署和病毒变种的出现进一步强调了这种多阶段性。为了应对这种多阶段性特征,我们根据阶段的具体定义,提出了一种建立大流行病整体过程模型的理论方法,我们称之为多期/多阶段方法。这样,即使在考虑疫苗接种和病毒变种的情况下,也能通过弱遍历更新方程序列,统一、简洁地表示复杂的流行过程。通过对流行病学和干预参数的特定假设,可以将其简化为简单的模型。该框架提出了一种简单的、理论驱动的数据解释方法,可以准确再现 COVID-19 在意大利从开始(2020 年 2 月)到奥米克隆开始流行的整个过程,证实了这一概念的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple pandemic waves vs multi-period/multi-phasic epidemics: Global shape of the COVID-19 pandemic

The overall course of the COVID-19 pandemic in Western countries has been characterized by complex sequences of phases. In the period before the arrival of vaccines, these phases were mainly due to the alternation between the strengthening/lifting of social distancing measures, with the aim to balance the protection of health and that of the society as a whole. After the arrival of vaccines, this multi-phasic character was further emphasized by the complicated deployment of vaccination campaigns and the onset of virus’ variants. To cope with this multi-phasic character, we propose a theoretical approach to the modeling of overall pandemic courses, that we term multi-period/multi-phasic, based on a specific definition of phase. This allows a unified and parsimonious representation of complex epidemic courses even when vaccination and virus’ variants are considered, through sequences of weak ergodic renewal equations that become fully ergodic when appropriate conditions are met. Specific hypotheses on epidemiological and intervention parameters allow reduction to simple models. The framework suggest a simple, theory driven, approach to data explanation that allows an accurate reproduction of the overall course of the COVID-19 epidemic in Italy since its beginning (February 2020) up to omicron onset, confirming the validity of the concept.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1