增大聚合体尺寸可减少嵌入水凝胶的湿地微生物对单细胞有机碳的吸收。

IF 5.1 Q1 ECOLOGY ISME communications Pub Date : 2024-06-20 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae086
Juliet T Johnston, Bao Nguyen Quoc, Britt Abrahamson, Pieter Candry, Christina Ramon, Kevin J Cash, Sam C Saccomano, Ty J Samo, Congwang Ye, Peter K Weber, Mari-Karoliina Henriikka Winkler, Xavier Mayali
{"title":"增大聚合体尺寸可减少嵌入水凝胶的湿地微生物对单细胞有机碳的吸收。","authors":"Juliet T Johnston, Bao Nguyen Quoc, Britt Abrahamson, Pieter Candry, Christina Ramon, Kevin J Cash, Sam C Saccomano, Ty J Samo, Congwang Ye, Peter K Weber, Mari-Karoliina Henriikka Winkler, Xavier Mayali","doi":"10.1093/ismeco/ycae086","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (<i>Flavobacterium</i> sp.)<i>,</i> and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with <sup>13</sup>C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes.\",\"authors\":\"Juliet T Johnston, Bao Nguyen Quoc, Britt Abrahamson, Pieter Candry, Christina Ramon, Kevin J Cash, Sam C Saccomano, Ty J Samo, Congwang Ye, Peter K Weber, Mari-Karoliina Henriikka Winkler, Xavier Mayali\",\"doi\":\"10.1093/ismeco/ycae086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (<i>Flavobacterium</i> sp.)<i>,</i> and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with <sup>13</sup>C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

沉积物中有机碳的微生物降解受到氧气和生长基质供应的影响。为了更好地了解颗粒大小和氧化还原带如何影响微生物有机碳的吸收,有必要采用保持空间信息的技术来量化微观尺度上的元素循环。在这项研究中,我们制作了不同直径(100、250 和 500 μm)的水凝胶微球,并在其中接种了从淡水湿地分离出来的好氧异养细菌(黄杆菌属),在第二次实验中接种了从城市湖沼湿地分离出来的微生物群落。水凝胶包埋的微生物种群与 13C 标记的底物一起培养,通过纳米吸附质谱(nanoSIMS)量化有机碳融入生物量的情况。此外,发光纳米传感器还能对微球内部的氧气浓度进行明确的空间测量。实验数据随后被纳入反应传输模型,以预测长期稳态条件。与较大的颗粒(250 微米和 500 微米)相比,较小(100 微米)的颗粒在单位体积内表现出最高的微生物细胞特异性生长,但在表面附近也表现出更高的绝对活性。实验结果和计算模型表明,有机碳的供应量不足以形成陡峭的氧气梯度,因此,所有尺寸的颗粒都保持了良好的供氧条件。我们的研究为今后利用同位素标记的底物来量化聚集体中微生物的生长情况,从而调查其空间依赖性活动的研究提供了一个基础框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes.

Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (Flavobacterium sp.), and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with 13C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metagenomic insights into inhibition of soil microbial carbon metabolism by phosphorus limitation during vegetation succession. Introduction into natural environments shifts the gut microbiome of captivity-raised filter-feeding bivalves. Metagenomic and -transcriptomic analyses of microbial nitrogen transformation potential, and gene expression in Swiss lake sediments. Biological and experimental factors that define the effectiveness of microbial inoculation on plant traits: a meta-analysis. Rhizospheric miRNAs affect the plant microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1