{"title":"有限域上随机矩阵高迹的等分布与高导体特征和的消除","authors":"Ofir Gorodetsky, Valeriya Kovaleva","doi":"10.1112/blms.13057","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> be a random matrix distributed according to uniform probability measure on the finite general linear group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{GL}_n(\\mathbb {F}_q)$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistributes on <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n \\rightarrow \\infty$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k=o(n^2)$</annotation>\n </semantics></math> and that this range is sharp. We also show that nontrivial linear combinations of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mn>1</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^1),\\ldots, \\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistribute as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩽</mo>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <mi>n</mi>\n </mrow>\n <annotation>$k \\leqslant c_q n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <annotation>$c_q$</annotation>\n </semantics></math> depends on <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math>, we end up showing that certain <i>explicit</i> character sums modulo <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$T^{k+1}$</annotation>\n </semantics></math> exhibit cancellation when averaged over monic polynomials of degree <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>[</mo>\n <mi>T</mi>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {F}_q[T]$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k = o(n^2)$</annotation>\n </semantics></math>. This goes far beyond the classical range <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2315-2337"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13057","citationCount":"0","resultStr":"{\"title\":\"Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor\",\"authors\":\"Ofir Gorodetsky, Valeriya Kovaleva\",\"doi\":\"10.1112/blms.13057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> be a random matrix distributed according to uniform probability measure on the finite general linear group <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>GL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{GL}_n(\\\\mathbb {F}_q)$</annotation>\\n </semantics></math>. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math> equidistributes on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$\\\\mathbb {F}_q$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$n \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k=o(n^2)$</annotation>\\n </semantics></math> and that this range is sharp. We also show that nontrivial linear combinations of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>Tr</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^1),\\\\ldots, \\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math> equidistribute as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k =o(n)$</annotation>\\n </semantics></math> and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <msub>\\n <mi>c</mi>\\n <mi>q</mi>\\n </msub>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$k \\\\leqslant c_q n$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mi>c</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$c_q$</annotation>\\n </semantics></math> depends on <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math>, we end up showing that certain <i>explicit</i> character sums modulo <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$T^{k+1}$</annotation>\\n </semantics></math> exhibit cancellation when averaged over monic polynomials of degree <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mrow>\\n <mo>[</mo>\\n <mi>T</mi>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {F}_q[T]$</annotation>\\n </semantics></math> as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k = o(n^2)$</annotation>\\n </semantics></math>. This goes far beyond the classical range <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k =o(n)$</annotation>\\n </semantics></math> due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2315-2337\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 g $g$ 是一个在有限一般线性群 GL n ( F q ) $\mathrm{GL}_n(\mathbb {F}_q)$ 上按均匀概率分布的随机矩阵。我们证明,只要 log k = o ( n 2 ) $\log k=o(n^2)$ ,Tr ( g k ) $\mathrm{Tr}(g^k)$ 在 n →∞ $n \rightarrow \infty$ 时等分布于 F q $\mathbb {F}_q$ 上,并且这个范围是尖锐的。我们还证明,Tr ( g 1 ) , ... , Tr ( g k ) $\mathrm{Tr}(g^1),\ldots, \mathrm{Tr}(g^k)$只要 log k = o ( n ) $\log k =o(n)$就会等分布,而且这个范围也是尖锐的。在此之前,由于第一作者和罗杰斯的研究,单个迹线或迹线线性组合的等分布只适用于 k ⩽ c q n $k \leqslant c_q n$,其中 c q $c_q$ 取决于 q $q$。我们将问题简化为在函数场中的某些短字符和中显示取消。对于 Tr ( g k ) $\mathrm{Tr}(g^k)$ 的等差数列,我们最终证明,只要 log k = o ( n 2 ) $\log k = o(n^2)$ ,在对 F q [ T ] $\mathbb {F}_q[T]$ 中 n $n$ 阶的单项式求平均数时,某些显式特征和 modulo T k + 1 $T^{k+1}$ 会表现出取消。
Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor
Let be a random matrix distributed according to uniform probability measure on the finite general linear group . We show that equidistributes on as as long as and that this range is sharp. We also show that nontrivial linear combinations of equidistribute as long as and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for , where depends on , due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of , we end up showing that certain explicit character sums modulo exhibit cancellation when averaged over monic polynomials of degree in as long as . This goes far beyond the classical range due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.