Michael Nagel, Lukas Fischer, Tim Pawlowski, Augustin Kelava
{"title":"高维环境下的另一种估计先验","authors":"Michael Nagel, Lukas Fischer, Tim Pawlowski, Augustin Kelava","doi":"10.1080/10705511.2023.2281279","DOIUrl":null,"url":null,"abstract":"Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichle...","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"53 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Alternative Prior for Estimation in High-Dimensional Settings\",\"authors\":\"Michael Nagel, Lukas Fischer, Tim Pawlowski, Augustin Kelava\",\"doi\":\"10.1080/10705511.2023.2281279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichle...\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2023.2281279\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2281279","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Alternative Prior for Estimation in High-Dimensional Settings
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichle...
期刊介绍:
Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.