时间分辨蛋白质合成揭示细胞信号传递的不同阶段

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2024-07-08 DOI:10.1038/s41589-024-01677-3
Gihoon Lee, Tom W. Muir
{"title":"时间分辨蛋白质合成揭示细胞信号传递的不同阶段","authors":"Gihoon Lee, Tom W. Muir","doi":"10.1038/s41589-024-01677-3","DOIUrl":null,"url":null,"abstract":"The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts. The modularity of the strategy allows for the addition or removal of various control elements as a function of the splicing reaction, in the process permitting the cellular location and/or activity state of starting materials and products to be differentiated. The approach is applied to a diverse set of proteins, including the kinase oncofusions breakpoint cluster region–Abelson (BCR–ABL) and DNAJ–PKAc where dynamic cellular phosphorylation events are dissected, revealing distinct phases of signaling and identifying molecular players connecting the oncofusion to cancer transformation as new therapeutic targets of cancer cells. We envision that the tools and control strategies developed herein will allow the activity of both naturally occurring and designer proteins to be harnessed for basic and applied research. Time-resolved synthesis of target proteins via proximity-triggered protein trans-splicing has now been shown to enable the activation of a diverse set of proteins upon the addition or removal of control elements. This temporal precision allows for monitoring distinct phases in cellular signaling and unveiling the molecular connections of oncofusion kinases, including DNAJ–PKAc.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct phases of cellular signaling revealed by time-resolved protein synthesis\",\"authors\":\"Gihoon Lee, Tom W. Muir\",\"doi\":\"10.1038/s41589-024-01677-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts. The modularity of the strategy allows for the addition or removal of various control elements as a function of the splicing reaction, in the process permitting the cellular location and/or activity state of starting materials and products to be differentiated. The approach is applied to a diverse set of proteins, including the kinase oncofusions breakpoint cluster region–Abelson (BCR–ABL) and DNAJ–PKAc where dynamic cellular phosphorylation events are dissected, revealing distinct phases of signaling and identifying molecular players connecting the oncofusion to cancer transformation as new therapeutic targets of cancer cells. We envision that the tools and control strategies developed herein will allow the activity of both naturally occurring and designer proteins to be harnessed for basic and applied research. Time-resolved synthesis of target proteins via proximity-triggered protein trans-splicing has now been shown to enable the activation of a diverse set of proteins upon the addition or removal of control elements. This temporal precision allows for monitoring distinct phases in cellular signaling and unveiling the molecular connections of oncofusion kinases, including DNAJ–PKAc.\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41589-024-01677-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01677-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质功能的翻译后调控涉及大多数细胞过程。因此,在这一水平上运行的合成生物学工具为操纵细胞状态提供了机会。在这里,我们利用近端触发的蛋白质转接技术,实现了从预制部件到目标蛋白质的时间分辨合成。该策略的模块化设计允许根据拼接反应的功能添加或移除各种控制元件,并在此过程中区分起始材料和产物的细胞位置和/或活性状态。这种方法适用于多种蛋白质,包括激酶融合断点集群区域-Abelson(BCR-ABL)和 DNAJ-PKAc,在这些蛋白质中,动态细胞磷酸化事件被剖析,揭示了信号传递的不同阶段,并确定了连接融合与癌症转化的分子角色,作为癌细胞的新治疗靶点。我们设想,本文所开发的工具和控制策略将使天然蛋白和设计蛋白的活性被用于基础研究和应用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct phases of cellular signaling revealed by time-resolved protein synthesis
The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts. The modularity of the strategy allows for the addition or removal of various control elements as a function of the splicing reaction, in the process permitting the cellular location and/or activity state of starting materials and products to be differentiated. The approach is applied to a diverse set of proteins, including the kinase oncofusions breakpoint cluster region–Abelson (BCR–ABL) and DNAJ–PKAc where dynamic cellular phosphorylation events are dissected, revealing distinct phases of signaling and identifying molecular players connecting the oncofusion to cancer transformation as new therapeutic targets of cancer cells. We envision that the tools and control strategies developed herein will allow the activity of both naturally occurring and designer proteins to be harnessed for basic and applied research. Time-resolved synthesis of target proteins via proximity-triggered protein trans-splicing has now been shown to enable the activation of a diverse set of proteins upon the addition or removal of control elements. This temporal precision allows for monitoring distinct phases in cellular signaling and unveiling the molecular connections of oncofusion kinases, including DNAJ–PKAc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
Engineering a xylose fermenting yeast for lignocellulosic ethanol production A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery Carbonic anhydrase inhibition ameliorates tau toxicity via enhanced tau secretion Evading resistance at the double Protein Degradation in Focus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1