从环境微真核细胞中获取ASV解析rRNA操作子的长线程测序策略基准。

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2024-07-09 DOI:10.1111/1755-0998.13991
Christina Karmisholt Overgaard, Mahwash Jamy, Simona Radutoiu, Fabien Burki, Morten Kam Dahl Dueholm
{"title":"从环境微真核细胞中获取ASV解析rRNA操作子的长线程测序策略基准。","authors":"Christina Karmisholt Overgaard,&nbsp;Mahwash Jamy,&nbsp;Simona Radutoiu,&nbsp;Fabien Burki,&nbsp;Morten Kam Dahl Dueholm","doi":"10.1111/1755-0998.13991","DOIUrl":null,"url":null,"abstract":"<p>The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.13991","citationCount":"0","resultStr":"{\"title\":\"Benchmarking long-read sequencing strategies for obtaining ASV-resolved rRNA operons from environmental microeukaryotes\",\"authors\":\"Christina Karmisholt Overgaard,&nbsp;Mahwash Jamy,&nbsp;Simona Radutoiu,&nbsp;Fabien Burki,&nbsp;Morten Kam Dahl Dueholm\",\"doi\":\"10.1111/1755-0998.13991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.13991\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13991\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13991","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏全面的 18S rRNA 参考数据库,使用短线程元条码对微核生物进行分类面临挑战。虽然高通量长读数测序技术的最新进展有可能大大增加这些数据库的系统发生学覆盖范围,但不同测序技术的性能以及后续的生物信息学处理仍有待评估,这主要是因为缺乏定义明确的真核模拟群落。为了应对这一挑战,我们创建了真核生物 rRNA 操作子克隆库,并将其转化为精确定义的合成真核生物模拟群落。这个模拟群落随后被用来评估三种长读数测序策略(PacBio 循环共识测序和两种使用独特分子标识符的 Nanopore 方法)和三种解决扩增子序列变异(ASV)的工具(USEARCH、VSEARCH 和 DADA2)的性能。我们根据检测到的模拟类群数量调查了测序技术的灵敏度,以及不同 ASV 调用工具的准确性,特别关注最终 rRNA 操作子 ASV 中是否存在嵌合体。基于我们的研究结果,我们为如何以高通量、经济有效的方式获得基本无误的 rRNA 操作子提供了建议和最佳实践方案。我们使用了一个农业土壤样本来证明,模拟群落的测序和生物信息学结果同样适用于高度多样化的自然样本,这使我们能够确定以前未曾描述过的微真核细胞系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking long-read sequencing strategies for obtaining ASV-resolved rRNA operons from environmental microeukaryotes

The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. HMicroDB: A Comprehensive Database of Herpetofaunal Microbiota With a Focus on Host Phylogeny, Physiological Traits, and Environment Factors. OGU: A Toolbox for Better Utilising Organelle Genomic Data. Correction to "Characterisation of Putative Circular Plasmids in Sponge-Associated Bacterial Communities Using a Selective Multiply-Primed Rolling Circle Amplification".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1