Luca Soliveri, David Bruneau, Johannes Ring, Michela Bozzetto, Andrea Remuzzi, Kristian Valen-Sendstad
{"title":"建立动静脉瘘血管壁振动的生理模型。","authors":"Luca Soliveri, David Bruneau, Johannes Ring, Michela Bozzetto, Andrea Remuzzi, Kristian Valen-Sendstad","doi":"10.1007/s10237-024-01865-z","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid–structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney–Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement (<span>\\(+400\\)</span>%) and strain (<span>\\(+317\\)</span>%), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant–Kirchhoff to Mooney–Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain (<span>\\(+116\\)</span>%). Robin boundary conditions significantly damped high-frequency displacement (<span>\\(-60\\)</span>%). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1741 - 1755"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a physiological model of vascular wall vibrations in the arteriovenous fistula\",\"authors\":\"Luca Soliveri, David Bruneau, Johannes Ring, Michela Bozzetto, Andrea Remuzzi, Kristian Valen-Sendstad\",\"doi\":\"10.1007/s10237-024-01865-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid–structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney–Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement (<span>\\\\(+400\\\\)</span>%) and strain (<span>\\\\(+317\\\\)</span>%), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant–Kirchhoff to Mooney–Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain (<span>\\\\(+116\\\\)</span>%). Robin boundary conditions significantly damped high-frequency displacement (<span>\\\\(-60\\\\)</span>%). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"23 5\",\"pages\":\"1741 - 1755\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-024-01865-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01865-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Toward a physiological model of vascular wall vibrations in the arteriovenous fistula
The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid–structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney–Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement (\(+400\)%) and strain (\(+317\)%), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant–Kirchhoff to Mooney–Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain (\(+116\)%). Robin boundary conditions significantly damped high-frequency displacement (\(-60\)%). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.