Sevilay Sezer , Ali Oter , Betul Ersoz , Canan Topcuoglu , Halil İbrahim Bulbul , Seref Sagiroglu , Murat Akin , Gulsen Yilmaz
{"title":"用于低密度脂蛋白胆固醇预测和分类的可解释人工智能。","authors":"Sevilay Sezer , Ali Oter , Betul Ersoz , Canan Topcuoglu , Halil İbrahim Bulbul , Seref Sagiroglu , Murat Akin , Gulsen Yilmaz","doi":"10.1016/j.clinbiochem.2024.110791","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Monitoring LDL-C levels is essential in clinical practice because there is a direct relation between low-density lipoprotein cholesterol (LDL-C) levels and atherosclerotic heart disease risk. Therefore, measurement or estimate of LDL-C is critical. The present study aims to evaluate Artificial Intelligence (AI) and Explainable AI (XAI) methodologies in predicting LDL-C levels while emphasizing the interpretability of these predictions.</p></div><div><h3>Materials and methods</h3><p>We retrospectively reviewed data from the Laboratory Information System (LIS) of Ankara Etlik City Hospital (AECH). We included 60.217 patients with standard lipid profiles (total cholesterol [TC], high-density lipoprotein cholesterol, and triglycerides) paired with same-day direct LDL-C results. AI methodologies, such as Gradient Boosting (GB), Random Forests (RF), Support Vector Machines (SVM), and Decision Trees (DT), were used to predict LDL-C and compared directly measured and calculated LDL-C with formulas. XAI techniques such as Shapley additive annotation (SHAP) and locally interpretable model-agnostic explanation (LIME) were used to interpret AI models and improve their explainability.</p></div><div><h3>Results</h3><p>Predicted LDL-C values using AI, especially RF or GB, showed a stronger correlation with direct measurement LDL-C values than calculated LDL-C values with formulas. TC was shown to be the most influential factor in LDL-C prediction using SHAP and LIME. The agreement between the treatment groups based on NCEP ATPIII guidelines according to measured LDL-C and the LDL-C groups obtained with AI was higher than that obtained with formulas.</p></div><div><h3>Conclusions</h3><p>It can be concluded that AI is not only a reliable method but also an explainable method for LDL-C estimation and classification.</p></div>","PeriodicalId":10172,"journal":{"name":"Clinical biochemistry","volume":"130 ","pages":"Article 110791"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence for LDL cholesterol prediction and classification\",\"authors\":\"Sevilay Sezer , Ali Oter , Betul Ersoz , Canan Topcuoglu , Halil İbrahim Bulbul , Seref Sagiroglu , Murat Akin , Gulsen Yilmaz\",\"doi\":\"10.1016/j.clinbiochem.2024.110791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Monitoring LDL-C levels is essential in clinical practice because there is a direct relation between low-density lipoprotein cholesterol (LDL-C) levels and atherosclerotic heart disease risk. Therefore, measurement or estimate of LDL-C is critical. The present study aims to evaluate Artificial Intelligence (AI) and Explainable AI (XAI) methodologies in predicting LDL-C levels while emphasizing the interpretability of these predictions.</p></div><div><h3>Materials and methods</h3><p>We retrospectively reviewed data from the Laboratory Information System (LIS) of Ankara Etlik City Hospital (AECH). We included 60.217 patients with standard lipid profiles (total cholesterol [TC], high-density lipoprotein cholesterol, and triglycerides) paired with same-day direct LDL-C results. AI methodologies, such as Gradient Boosting (GB), Random Forests (RF), Support Vector Machines (SVM), and Decision Trees (DT), were used to predict LDL-C and compared directly measured and calculated LDL-C with formulas. XAI techniques such as Shapley additive annotation (SHAP) and locally interpretable model-agnostic explanation (LIME) were used to interpret AI models and improve their explainability.</p></div><div><h3>Results</h3><p>Predicted LDL-C values using AI, especially RF or GB, showed a stronger correlation with direct measurement LDL-C values than calculated LDL-C values with formulas. TC was shown to be the most influential factor in LDL-C prediction using SHAP and LIME. The agreement between the treatment groups based on NCEP ATPIII guidelines according to measured LDL-C and the LDL-C groups obtained with AI was higher than that obtained with formulas.</p></div><div><h3>Conclusions</h3><p>It can be concluded that AI is not only a reliable method but also an explainable method for LDL-C estimation and classification.</p></div>\",\"PeriodicalId\":10172,\"journal\":{\"name\":\"Clinical biochemistry\",\"volume\":\"130 \",\"pages\":\"Article 110791\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009912024000857\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009912024000857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Explainable artificial intelligence for LDL cholesterol prediction and classification
Introduction
Monitoring LDL-C levels is essential in clinical practice because there is a direct relation between low-density lipoprotein cholesterol (LDL-C) levels and atherosclerotic heart disease risk. Therefore, measurement or estimate of LDL-C is critical. The present study aims to evaluate Artificial Intelligence (AI) and Explainable AI (XAI) methodologies in predicting LDL-C levels while emphasizing the interpretability of these predictions.
Materials and methods
We retrospectively reviewed data from the Laboratory Information System (LIS) of Ankara Etlik City Hospital (AECH). We included 60.217 patients with standard lipid profiles (total cholesterol [TC], high-density lipoprotein cholesterol, and triglycerides) paired with same-day direct LDL-C results. AI methodologies, such as Gradient Boosting (GB), Random Forests (RF), Support Vector Machines (SVM), and Decision Trees (DT), were used to predict LDL-C and compared directly measured and calculated LDL-C with formulas. XAI techniques such as Shapley additive annotation (SHAP) and locally interpretable model-agnostic explanation (LIME) were used to interpret AI models and improve their explainability.
Results
Predicted LDL-C values using AI, especially RF or GB, showed a stronger correlation with direct measurement LDL-C values than calculated LDL-C values with formulas. TC was shown to be the most influential factor in LDL-C prediction using SHAP and LIME. The agreement between the treatment groups based on NCEP ATPIII guidelines according to measured LDL-C and the LDL-C groups obtained with AI was higher than that obtained with formulas.
Conclusions
It can be concluded that AI is not only a reliable method but also an explainable method for LDL-C estimation and classification.
期刊介绍:
Clinical Biochemistry publishes articles relating to clinical chemistry, molecular biology and genetics, therapeutic drug monitoring and toxicology, laboratory immunology and laboratory medicine in general, with the focus on analytical and clinical investigation of laboratory tests in humans used for diagnosis, prognosis, treatment and therapy, and monitoring of disease.