{"title":"利用光学相干断层扫描和眼底图像检测青光眼性视神经病变的双模式融合网络","authors":"Yongli Xu, Run Sun, Man Hu, Hui Zeng","doi":"10.1080/02713683.2024.2375401","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.</p><p><strong>Methods: </strong>A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.</p><p><strong>Results: </strong>The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.</p><p><strong>Conclusion: </strong>Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.</p>","PeriodicalId":10782,"journal":{"name":"Current Eye Research","volume":" ","pages":"1253-1259"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Modal Fusion Network Using Optical Coherence Tomography and Fundus Images in Detection of Glaucomatous Optic Neuropathy.\",\"authors\":\"Yongli Xu, Run Sun, Man Hu, Hui Zeng\",\"doi\":\"10.1080/02713683.2024.2375401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.</p><p><strong>Methods: </strong>A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.</p><p><strong>Results: </strong>The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.</p><p><strong>Conclusion: </strong>Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.</p>\",\"PeriodicalId\":10782,\"journal\":{\"name\":\"Current Eye Research\",\"volume\":\" \",\"pages\":\"1253-1259\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02713683.2024.2375401\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2024.2375401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
A Dual-Modal Fusion Network Using Optical Coherence Tomography and Fundus Images in Detection of Glaucomatous Optic Neuropathy.
Purpose: We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.
Methods: A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.
Results: The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.
Conclusion: Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.
期刊介绍:
The principal aim of Current Eye Research is to provide rapid publication of full papers, short communications and mini-reviews, all high quality. Current Eye Research publishes articles encompassing all the areas of eye research. Subject areas include the following: clinical research, anatomy, physiology, biophysics, biochemistry, pharmacology, developmental biology, microbiology and immunology.