利用光学相干断层扫描和眼底图像检测青光眼性视神经病变的双模式融合网络

IF 1.7 4区 医学 Q3 OPHTHALMOLOGY Current Eye Research Pub Date : 2024-12-01 Epub Date: 2024-07-09 DOI:10.1080/02713683.2024.2375401
Yongli Xu, Run Sun, Man Hu, Hui Zeng
{"title":"利用光学相干断层扫描和眼底图像检测青光眼性视神经病变的双模式融合网络","authors":"Yongli Xu, Run Sun, Man Hu, Hui Zeng","doi":"10.1080/02713683.2024.2375401","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.</p><p><strong>Methods: </strong>A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.</p><p><strong>Results: </strong>The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.</p><p><strong>Conclusion: </strong>Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.</p>","PeriodicalId":10782,"journal":{"name":"Current Eye Research","volume":" ","pages":"1253-1259"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Modal Fusion Network Using Optical Coherence Tomography and Fundus Images in Detection of Glaucomatous Optic Neuropathy.\",\"authors\":\"Yongli Xu, Run Sun, Man Hu, Hui Zeng\",\"doi\":\"10.1080/02713683.2024.2375401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.</p><p><strong>Methods: </strong>A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.</p><p><strong>Results: </strong>The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.</p><p><strong>Conclusion: </strong>Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.</p>\",\"PeriodicalId\":10782,\"journal\":{\"name\":\"Current Eye Research\",\"volume\":\" \",\"pages\":\"1253-1259\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02713683.2024.2375401\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2024.2375401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们设计了一个双模态融合网络来检测青光眼性视神经病变,该网络同时利用了光学相干断层扫描报告中的视网膜神经纤维层厚度和眼底图像:共纳入 327 名健康受试者(410 只眼)和 87 名青光眼性视神经病变患者(113 只眼)。光学相干断层扫描报告和眼底图像中的视网膜神经纤维层厚度被用作双模态融合网络诊断青光眼的预测指标。测量了接收者操作特征曲线下面积、准确性、灵敏度和特异性,以比较我们的方法和其他方法:同时使用光学相干断层扫描报告中的视网膜神经纤维层厚度和眼底图像,我们的双模态融合网络的准确度为 0.935,而且我们的方法的接收者操作特征曲线下面积显著增大,达到 0.968(95% 置信区间,0.937-0.999)。仅使用视网膜神经纤维层厚度时,我们比较了我们的网络和其他三种方法的接收器运算特征曲线下面积:我们的光学相干断层扫描网络的接收器运算特征曲线下面积为 0.916(95% 置信区间,0.855,0.977);时钟扇区划分的接收器运算特征曲线下面积为 0.841(95% 置信区间,0.749,0.933);下、上、鼻颞扇区划分的接收器运算特征曲线下面积为 0.862(95% 置信区间,0.757,0.968);视盘扇区划分的接收器运算特征曲线下面积为 0.886(95% 置信区间,0.815,0.957)。对于只使用眼底图像的情况,我们比较了我们的网络和其他两种方法的接收者操作特征曲线下的面积:我们的图像网络为 0.867(95% 置信区间:0.781-0.952);ResNet50 为 0.774(95% 置信区间:0.670-0.878);VGG16 为 0.747(95% 置信区间:0.628-0.866):我们的双模态融合网络同时利用了光学相干断层扫描报告中的视网膜神经纤维层厚度和眼底图像,在诊断青光眼方面比目前仅基于光学相干断层扫描或仅基于眼底图像的方法有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dual-Modal Fusion Network Using Optical Coherence Tomography and Fundus Images in Detection of Glaucomatous Optic Neuropathy.

Purpose: We designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.

Methods: A total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.

Results: The accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.

Conclusion: Our dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Eye Research
Current Eye Research 医学-眼科学
CiteScore
4.60
自引率
0.00%
发文量
163
审稿时长
12 months
期刊介绍: The principal aim of Current Eye Research is to provide rapid publication of full papers, short communications and mini-reviews, all high quality. Current Eye Research publishes articles encompassing all the areas of eye research. Subject areas include the following: clinical research, anatomy, physiology, biophysics, biochemistry, pharmacology, developmental biology, microbiology and immunology.
期刊最新文献
Relationship of Angle Kappa with Ocular Parameters using Swept-Source Ocular Coherence Tomography in Cataract Surgery Patients. Selective Gamma-Secretase Inhibition by CHF5074 Attenuates Inflammation and Neovascularization in a Murine Model of Choroidal Neovascularization. Expression of PAX6 and Keratocyte-Characteristic Markers in Human Limbal Stromal Cells of Congenital Aniridia and Healthy Subjects, In Vitro. Brolucizumab and Platelet Activation and Reactivity. Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1