鞣花酸作为糖尿病及其并发症的潜在治疗化合物:从实验到临床的系统回顾。

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY Naunyn-Schmiedeberg's archives of pharmacology Pub Date : 2024-12-01 Epub Date: 2024-07-09 DOI:10.1007/s00210-024-03280-8
Hossein Ghazaee, Alireza Raouf Sheibani, Haniyeh Mahdian, Shamim Gholami, Vahid Reza Askari, Vafa Baradaran Rahimi
{"title":"鞣花酸作为糖尿病及其并发症的潜在治疗化合物:从实验到临床的系统回顾。","authors":"Hossein Ghazaee, Alireza Raouf Sheibani, Haniyeh Mahdian, Shamim Gholami, Vahid Reza Askari, Vafa Baradaran Rahimi","doi":"10.1007/s00210-024-03280-8","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"9345-9366"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ellagic acid as potential therapeutic compound for diabetes and its complications: a systematic review from bench to bed.\",\"authors\":\"Hossein Ghazaee, Alireza Raouf Sheibani, Haniyeh Mahdian, Shamim Gholami, Vahid Reza Askari, Vafa Baradaran Rahimi\",\"doi\":\"10.1007/s00210-024-03280-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"9345-9366\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03280-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03280-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)是一种世界性疾病,发病率不断上升。目前有许多旨在寻找新的有效治疗方法的研究正在进行中。鞣花酸(EA)是一种天然多酚化合物,在某些水果和蔬菜中含量丰富。本研究旨在评估鞣花酸对糖尿病及其相关并发症的有效性和预防机制。本系统性综述使用了 PubMed、Scopus 和 Google Scholar 作为检索数据库,并采用了从开始到 2024 年 6 月的预定方案。我们评估了所有相关的英文研究,包括体外、体内和临床试验。EA通过减少炎症、氧化应激、高血糖、细胞凋亡、胰岛素抵抗、肥胖、血脂和组织病理学改变来对抗DM及其并发症。EA 的抗糖尿病作用有多种机制,其中最重要的是上调核因子红细胞 2 相关因子 2(Nrf2)、血红素加氧酶 1(HO-1)、过氧化物酶体增殖激活受体γ(PPAR-γ)、蛋白激酶 B,以及下调核因子卡巴(NF-κB)基因的表达。EA 对糖尿病并发症也有保护作用,如糖尿病引起的肝损伤、睾丸损伤、内皮功能障碍、肌肉功能障碍、视网膜病变、肾病、心肌病、神经病变和行为缺陷。服用 EA 对预防、治疗和缓解糖尿病及其并发症有多种保护作用。虽然 EA 可被视为一种经济、安全、方便的治疗方法,但要完全确定 EA 作为 DM 药物的有效性,必须开展进一步的精心设计的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ellagic acid as potential therapeutic compound for diabetes and its complications: a systematic review from bench to bed.

Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
期刊最新文献
Correction: Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. Advanced glycosylation end products promote the progression of CKD-MBD in rats, and its natural inhibitor, quercetin, mitigates disease progression. Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells. Enhancement of anti-cancer compounds in fungal elicited-Oldenlandia umbellata culture. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1