Hetal P Patel, Ayushi V Vasandia, Rahul Jha, Bhargavi V Desai, Ditixa T Desai, Praful P Dedhiya, Bhavin A Vyas, Furqan A Maulvi
{"title":"多塞平的鼻内给药:利用纳米结构脂质载体提高生物制药药物处置分类系统 I 类药物的脑靶向效率。","authors":"Hetal P Patel, Ayushi V Vasandia, Rahul Jha, Bhargavi V Desai, Ditixa T Desai, Praful P Dedhiya, Bhavin A Vyas, Furqan A Maulvi","doi":"10.1080/10837450.2024.2376102","DOIUrl":null,"url":null,"abstract":"<p><p>Doxepin, a Class-I Biopharmaceutics Drug Disposition Classification System (BDDCS) drug, exhibits poor bioavailability due to extensive first-pass metabolism. This research focuses on enhancing the delivery of doxepin by formulating nanostructured lipid carriers (NLCs) through the utilization of the Box-Behnken Design methodology. These optimized NLCs are intended for intranasal administration, with the ultimate goal of improving nose-to-brain drug delivery. NLCs were formulated using a high-speed homogenization technique. The optimized batch had a small particle size (75.80 ± 5.48 nm, PDI = 0.286), high entrapment efficiency (94.10 ± 0.16%), and sustained <i>ex vivo</i> release (82.25 ± 4.61% at 24 h). Characterization studies confirmed the conversion of doxepin from a crystalline to an amorphous state with uniform distribution in the lipid matrix. <i>In vivo</i> pharmacokinetic studies in rats showed significantly higher doxepin concentration in the brain tissue (C<sub>max</sub> = 16.77 µg/g, t<sub>max</sub> = 30 min) after intranasal administration compared to intravenous administration (C<sub>max</sub> = 2.53 µg/g, t<sub>max</sub> = 6 h). High-drug targeting efficiency (DTE = 284.3%) and direct transport percentage (DTP = 64.8%) suggested direct penetration of NLCs in the brain <i>via</i> olfactory and trigeminal pathways. In conclusion, the study highlights the potential of NLCs to improve the bioavailability of doxepin through nose-to-brain delivery and thereby potentially enable the treatment of neurological disorders.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"639-647"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intranasal delivery of doxepin: enhancing brain targeting efficiency utilizing nanostructured lipid carriers for a biopharmaceutics drug disposition classification system class-I drug.\",\"authors\":\"Hetal P Patel, Ayushi V Vasandia, Rahul Jha, Bhargavi V Desai, Ditixa T Desai, Praful P Dedhiya, Bhavin A Vyas, Furqan A Maulvi\",\"doi\":\"10.1080/10837450.2024.2376102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxepin, a Class-I Biopharmaceutics Drug Disposition Classification System (BDDCS) drug, exhibits poor bioavailability due to extensive first-pass metabolism. This research focuses on enhancing the delivery of doxepin by formulating nanostructured lipid carriers (NLCs) through the utilization of the Box-Behnken Design methodology. These optimized NLCs are intended for intranasal administration, with the ultimate goal of improving nose-to-brain drug delivery. NLCs were formulated using a high-speed homogenization technique. The optimized batch had a small particle size (75.80 ± 5.48 nm, PDI = 0.286), high entrapment efficiency (94.10 ± 0.16%), and sustained <i>ex vivo</i> release (82.25 ± 4.61% at 24 h). Characterization studies confirmed the conversion of doxepin from a crystalline to an amorphous state with uniform distribution in the lipid matrix. <i>In vivo</i> pharmacokinetic studies in rats showed significantly higher doxepin concentration in the brain tissue (C<sub>max</sub> = 16.77 µg/g, t<sub>max</sub> = 30 min) after intranasal administration compared to intravenous administration (C<sub>max</sub> = 2.53 µg/g, t<sub>max</sub> = 6 h). High-drug targeting efficiency (DTE = 284.3%) and direct transport percentage (DTP = 64.8%) suggested direct penetration of NLCs in the brain <i>via</i> olfactory and trigeminal pathways. In conclusion, the study highlights the potential of NLCs to improve the bioavailability of doxepin through nose-to-brain delivery and thereby potentially enable the treatment of neurological disorders.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"639-647\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2376102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2376102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intranasal delivery of doxepin: enhancing brain targeting efficiency utilizing nanostructured lipid carriers for a biopharmaceutics drug disposition classification system class-I drug.
Doxepin, a Class-I Biopharmaceutics Drug Disposition Classification System (BDDCS) drug, exhibits poor bioavailability due to extensive first-pass metabolism. This research focuses on enhancing the delivery of doxepin by formulating nanostructured lipid carriers (NLCs) through the utilization of the Box-Behnken Design methodology. These optimized NLCs are intended for intranasal administration, with the ultimate goal of improving nose-to-brain drug delivery. NLCs were formulated using a high-speed homogenization technique. The optimized batch had a small particle size (75.80 ± 5.48 nm, PDI = 0.286), high entrapment efficiency (94.10 ± 0.16%), and sustained ex vivo release (82.25 ± 4.61% at 24 h). Characterization studies confirmed the conversion of doxepin from a crystalline to an amorphous state with uniform distribution in the lipid matrix. In vivo pharmacokinetic studies in rats showed significantly higher doxepin concentration in the brain tissue (Cmax = 16.77 µg/g, tmax = 30 min) after intranasal administration compared to intravenous administration (Cmax = 2.53 µg/g, tmax = 6 h). High-drug targeting efficiency (DTE = 284.3%) and direct transport percentage (DTP = 64.8%) suggested direct penetration of NLCs in the brain via olfactory and trigeminal pathways. In conclusion, the study highlights the potential of NLCs to improve the bioavailability of doxepin through nose-to-brain delivery and thereby potentially enable the treatment of neurological disorders.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.