{"title":"板蓝根提取物对癌症细胞株的体外研究","authors":"Fathima Nausheen Usman, Shailesh Sharma","doi":"10.62958/j.cjap.2024.010","DOIUrl":null,"url":null,"abstract":"<p><p>Despite increased use of early detection methods and more aggressive treatment strategies, the worldwide incidence of colorectal cancer is still on the rise. Consequently, it remains urgent to identify novel agents with enhanced efficacy in prevention and/or therapeutic protocols. Our studies focused on the use of Plumbagin, a natural phytochemical that showed promising results against other tumor types, to determine its effectiveness in blocking the proliferation and survival of colon cancer cells in experimental protocols mimicking the environment in primary tumors (attached culture conditions) and in circulating tumor cells (unattached conditions). Under both experimental settings, exposure of HCT116 cells to Plumbagin concentrations in the low micromolar range resulted in cell cycle arrest at the G1 phase, apoptosis via the mitochondrial cell death pathway, and increased production of reactive oxygen species. The cell cycle effects were more noticeable in attached cells, whereas the induction of cell death was more evident in unattached cells. These effects were consistent with the nature and the magnitude of the alterations induced by Plumbagin on the expression levels of a set of proteins known to play key roles in the regulation of cell cycle dynamics, apoptosis mechanisms and cell proliferation. In light of its previously reported lack of toxicity on normal colon cells and the striking anti-survival effect on colon cancer cells observed in our study, Plumbagin should be considered a promising drug for the treatment of colon cancer.</p>","PeriodicalId":23985,"journal":{"name":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","volume":"40 ","pages":"e20240010"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro Studies of Extracts of Plumbago Zeylanica in Cancer Cell Lines.\",\"authors\":\"Fathima Nausheen Usman, Shailesh Sharma\",\"doi\":\"10.62958/j.cjap.2024.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite increased use of early detection methods and more aggressive treatment strategies, the worldwide incidence of colorectal cancer is still on the rise. Consequently, it remains urgent to identify novel agents with enhanced efficacy in prevention and/or therapeutic protocols. Our studies focused on the use of Plumbagin, a natural phytochemical that showed promising results against other tumor types, to determine its effectiveness in blocking the proliferation and survival of colon cancer cells in experimental protocols mimicking the environment in primary tumors (attached culture conditions) and in circulating tumor cells (unattached conditions). Under both experimental settings, exposure of HCT116 cells to Plumbagin concentrations in the low micromolar range resulted in cell cycle arrest at the G1 phase, apoptosis via the mitochondrial cell death pathway, and increased production of reactive oxygen species. The cell cycle effects were more noticeable in attached cells, whereas the induction of cell death was more evident in unattached cells. These effects were consistent with the nature and the magnitude of the alterations induced by Plumbagin on the expression levels of a set of proteins known to play key roles in the regulation of cell cycle dynamics, apoptosis mechanisms and cell proliferation. In light of its previously reported lack of toxicity on normal colon cells and the striking anti-survival effect on colon cancer cells observed in our study, Plumbagin should be considered a promising drug for the treatment of colon cancer.</p>\",\"PeriodicalId\":23985,\"journal\":{\"name\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"volume\":\"40 \",\"pages\":\"e20240010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62958/j.cjap.2024.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62958/j.cjap.2024.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
In-vitro Studies of Extracts of Plumbago Zeylanica in Cancer Cell Lines.
Despite increased use of early detection methods and more aggressive treatment strategies, the worldwide incidence of colorectal cancer is still on the rise. Consequently, it remains urgent to identify novel agents with enhanced efficacy in prevention and/or therapeutic protocols. Our studies focused on the use of Plumbagin, a natural phytochemical that showed promising results against other tumor types, to determine its effectiveness in blocking the proliferation and survival of colon cancer cells in experimental protocols mimicking the environment in primary tumors (attached culture conditions) and in circulating tumor cells (unattached conditions). Under both experimental settings, exposure of HCT116 cells to Plumbagin concentrations in the low micromolar range resulted in cell cycle arrest at the G1 phase, apoptosis via the mitochondrial cell death pathway, and increased production of reactive oxygen species. The cell cycle effects were more noticeable in attached cells, whereas the induction of cell death was more evident in unattached cells. These effects were consistent with the nature and the magnitude of the alterations induced by Plumbagin on the expression levels of a set of proteins known to play key roles in the regulation of cell cycle dynamics, apoptosis mechanisms and cell proliferation. In light of its previously reported lack of toxicity on normal colon cells and the striking anti-survival effect on colon cancer cells observed in our study, Plumbagin should be considered a promising drug for the treatment of colon cancer.