通过整合素αVβ3靶向拟肽IAC推进癌症治疗:从工作台到病床。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2024-07-08 DOI:10.1089/cbr.2023.0140
Somit Pandey, Gurvinder Kaur, Nivedita Rana, Sejal Chopra, Imran Rather, Rajender Kumar, Ishita Laroiya, Vijayta D Chadha, Stanley Satz, Micheal G Stabin, Bhagwant Rai Mittal, Jaya Shukla
{"title":"通过整合素αVβ3靶向拟肽IAC推进癌症治疗:从工作台到病床。","authors":"Somit Pandey, Gurvinder Kaur, Nivedita Rana, Sejal Chopra, Imran Rather, Rajender Kumar, Ishita Laroiya, Vijayta D Chadha, Stanley Satz, Micheal G Stabin, Bhagwant Rai Mittal, Jaya Shukla","doi":"10.1089/cbr.2023.0140","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. <b><i>Methodology:</i></b> Radiolabeling of DOTAGA [2,2',2\"-{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [<sup>68</sup>Ga]Ga, [<sup>177</sup>Lu]Lu, and [<sup>225</sup>Ac]Ac was optimized. The binding affinity (K<sub>d</sub>) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [<sup>177</sup>Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [<sup>68</sup>Ga]Ga-DOTAGA-IAC and [<sup>18</sup>F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [<sup>68</sup>Ga]Ga-DOTAGA-IAC and [<sup>18</sup>F]FDG in these patients. <b><i>Results:</i></b> Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). K<sub>d</sub> and B<sub>max</sub> measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [<sup>177</sup>Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [<sup>68</sup>Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUV<sub>max</sub>) of 3.94 ± 0.58 compared with [<sup>18</sup>F]FDG (SUV<sub>max</sub> 13.8 ± 6.53). <b><i>Conclusion:</i></b> The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [<sup>68</sup>Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"632-643"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Cancer Theranostics Through Integrin αVβ3-Targeted Peptidomimetic IAC: From Bench to Bedside.\",\"authors\":\"Somit Pandey, Gurvinder Kaur, Nivedita Rana, Sejal Chopra, Imran Rather, Rajender Kumar, Ishita Laroiya, Vijayta D Chadha, Stanley Satz, Micheal G Stabin, Bhagwant Rai Mittal, Jaya Shukla\",\"doi\":\"10.1089/cbr.2023.0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. <b><i>Methodology:</i></b> Radiolabeling of DOTAGA [2,2',2\\\"-{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [<sup>68</sup>Ga]Ga, [<sup>177</sup>Lu]Lu, and [<sup>225</sup>Ac]Ac was optimized. The binding affinity (K<sub>d</sub>) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [<sup>177</sup>Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [<sup>68</sup>Ga]Ga-DOTAGA-IAC and [<sup>18</sup>F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [<sup>68</sup>Ga]Ga-DOTAGA-IAC and [<sup>18</sup>F]FDG in these patients. <b><i>Results:</i></b> Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). K<sub>d</sub> and B<sub>max</sub> measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [<sup>177</sup>Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [<sup>68</sup>Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUV<sub>max</sub>) of 3.94 ± 0.58 compared with [<sup>18</sup>F]FDG (SUV<sub>max</sub> 13.8 ± 6.53). <b><i>Conclusion:</i></b> The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [<sup>68</sup>Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"632-643\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cbr.2023.0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2023.0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

导言:α-5β-3(αVβ3)整合素的表达在各种发生血管生成的恶性肿瘤中上调。作为诊断探针的整合素拮抗剂的开发使αVβ3整合素成为靶向肿瘤血管生成的合适候选物。本研究的目的是优化共轭整合素拮抗剂氨基甲酸酯(IAC)的放射性标记,并评估其作为靶向肿瘤血管生成的治疗放射性药物的潜力。研究方法用[68Ga]Ga、[177Lu]Lu和[225Ac]Ac对DOTAGA[2,2',2" -{10-(2,6-二氧代四氢-2H-吡喃-3-基)-1,4,7,10-四氮杂环十二烷-1,4,7-三基}三乙酸]-IAC进行放射性标记。对 DOTAGA-IAC 与 αVβ3 受体和癌细胞株的结合亲和力(Kd)进行了量化。生物分布研究在健康的 Wistar 大鼠中进行。对[177Lu]Lu-DOTAGA-IAC分布数据进行了剂量测定分析。对五名经组织病理学确诊的乳腺癌患者进行了[68Ga]Ga-DOTAGA-IAC和[18F]FDG正电子发射断层扫描(PET/CT)成像试验研究。比较了这些患者的[68Ga]Ga-DOTAGA-IAC和[18F]FDG正电子发射断层扫描结果。结果:制备的放射性药物具有很高的放射化学纯度(>99.9%)。αVβ3受体蛋白的Kd和Bmax分别为15.02 nM和417 fmol:C6胶质瘤细胞的Kd和Bmax分别为115.7 nM和295.3 fmol。对大鼠的生物分布研究表明,[177Lu]通过肾脏排泄,部分通过肝胆途径排泄。研究发现,[177Lu]Lu-DOTAGA-IAC 的有效剂量为 0.17 mSv/MBq。对患者进行的动态研究显示,最佳成像时间为给药后 30-35 分钟。与[18F]FDG(SUVmax为13.8 ± 6.53)相比,[68Ga]Ga-DOTAGA-IAC能检测到所有五名患者的原发病灶,平均标准摄取值(SUVmax)为3.94 ± 0.58。结论该研究表明,DOTAGA-IAC 与 αVβ3 整合素的结合力很强,有望成为评估原发性和转移性癌症的 PET 探针。试点研究的结果表明,[68Ga]Ga-DOTAGA-IAC PET/CT 在乳腺癌诊断中具有潜力。虽然认识到 DOTAGA-IAC 对表达 αVβ3 整合素的肿瘤具有治疗潜力,但还需要进一步的临床研究来全面评估疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Cancer Theranostics Through Integrin αVβ3-Targeted Peptidomimetic IAC: From Bench to Bedside.

Introduction: The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. Methodology: Radiolabeling of DOTAGA [2,2',2"-{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [68Ga]Ga, [177Lu]Lu, and [225Ac]Ac was optimized. The binding affinity (Kd) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [177Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [68Ga]Ga-DOTAGA-IAC and [18F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [68Ga]Ga-DOTAGA-IAC and [18F]FDG in these patients. Results: Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). Kd and Bmax measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [177Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [68Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUVmax) of 3.94 ± 0.58 compared with [18F]FDG (SUVmax 13.8 ± 6.53). Conclusion: The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [68Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1