斯瓦尔巴群岛尼-埃勒松德附近 2022 年夏季电阻率层析成像和探地雷达数据新库

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-07-09 DOI:10.5194/essd-16-3171-2024
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, Alessandro Santilano
{"title":"斯瓦尔巴群岛尼-埃勒松德附近 2022 年夏季电阻率层析成像和探地雷达数据新库","authors":"Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, Alessandro Santilano","doi":"10.5194/essd-16-3171-2024","DOIUrl":null,"url":null,"abstract":"Abstract. We present the geophysical data set acquired in summer 2022 close to Ny-Ålesund (western Svalbard, Brøggerhalvøya Peninsula, Norway) as part of the project ICEtoFLUX. The aim of the investigation is to characterize the role of groundwater flow through the active layer as well as through and/or below the permafrost. The data set is composed of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) surveys, which are well-known geophysical techniques for the characterization of glacial and hydrological processes and features. Overall, 18 ERT profiles and 10 GPR lines were acquired, for a total surveyed length of 9.3 km. The data have been organized in a consistent repository that includes both raw and processed (filtered) data. Some representative examples of 2D models of the subsurface are provided, that is, 2D sections of electrical resistivity (from ERT) and 2D radargrams (from GPR). The resistivity models revealed deep resistive structures, probably related to the heterogeneous permafrost, which are often interrupted by electrically conductive regions that may relate to aquifers and/or faults. The interpretation of these data can support the identification of the active layer, the occurrence of spatial variation in soil conditions at depth, and the presence of groundwater flow through the permafrost. To a large extent, the data set can provide new insight into the hydrological dynamics and polar and climate change studies of the Ny-Ålesund area. The data set is of major relevance because there are few geophysical data published about the Ny-Ålesund area. Moreover, these geophysical data can foster multidisciplinary scientific collaborations in the fields of hydrology, glaciology, climate, geology, and geomorphology, etc. The geophysical data are provided in a free repository and can be accessed at https://doi.org/10.5281/zenodo.10260056 (Pace et al., 2023).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"26 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard\",\"authors\":\"Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, Alessandro Santilano\",\"doi\":\"10.5194/essd-16-3171-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We present the geophysical data set acquired in summer 2022 close to Ny-Ålesund (western Svalbard, Brøggerhalvøya Peninsula, Norway) as part of the project ICEtoFLUX. The aim of the investigation is to characterize the role of groundwater flow through the active layer as well as through and/or below the permafrost. The data set is composed of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) surveys, which are well-known geophysical techniques for the characterization of glacial and hydrological processes and features. Overall, 18 ERT profiles and 10 GPR lines were acquired, for a total surveyed length of 9.3 km. The data have been organized in a consistent repository that includes both raw and processed (filtered) data. Some representative examples of 2D models of the subsurface are provided, that is, 2D sections of electrical resistivity (from ERT) and 2D radargrams (from GPR). The resistivity models revealed deep resistive structures, probably related to the heterogeneous permafrost, which are often interrupted by electrically conductive regions that may relate to aquifers and/or faults. The interpretation of these data can support the identification of the active layer, the occurrence of spatial variation in soil conditions at depth, and the presence of groundwater flow through the permafrost. To a large extent, the data set can provide new insight into the hydrological dynamics and polar and climate change studies of the Ny-Ålesund area. The data set is of major relevance because there are few geophysical data published about the Ny-Ålesund area. Moreover, these geophysical data can foster multidisciplinary scientific collaborations in the fields of hydrology, glaciology, climate, geology, and geomorphology, etc. The geophysical data are provided in a free repository and can be accessed at https://doi.org/10.5281/zenodo.10260056 (Pace et al., 2023).\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-16-3171-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-16-3171-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要。我们介绍了 2022 年夏季在 Ny-Ålesund(斯瓦尔巴群岛西部,挪威布尔格哈尔沃亚半岛)附近获取的地球物理数据集,该数据集是 ICEtoFLUX 项目的一部分。调查的目的是确定地下水流经活动层以及永久冻土层和/或永久冻土层以下的作用。数据集由电阻率层析成像(ERT)和探地雷达(GPR)勘测组成,这些都是用于描述冰川和水文过程及特征的著名地球物理技术。总体而言,共获取了 18 条 ERT 剖面图和 10 条 GPR 线路,勘测总长度为 9.3 公里。这些数据被整理到一个统一的资料库中,其中包括原始数据和经过处理(过滤)的数据。提供了一些具有代表性的地下二维模型实例,即电阻率二维剖面图(来自 ERT)和二维雷达图(来自 GPR)。电阻率模型揭示了深层电阻结构,可能与多质永冻层有关,这些结构经常被导电区域打断,可能与含水层和/或断层有关。对这些数据的解释有助于确定活动层、深层土壤条件的空间变化以及地下水流经冻土层的情况。在很大程度上,该数据集可为尼-奥勒松地区的水文动态、极地和气候变化研究提供新的视角。该数据集具有重要意义,因为有关尼-奥勒松地区的地球物理数据很少。此外,这些地球物理数据可以促进水文学、冰川学、气候学、地质学和地貌学等领域的多学科科学合作。地球物理数据在一个免费的储存库中提供,可在 https://doi.org/10.5281/zenodo.10260056(Pace 等人,2023 年)上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Abstract. We present the geophysical data set acquired in summer 2022 close to Ny-Ålesund (western Svalbard, Brøggerhalvøya Peninsula, Norway) as part of the project ICEtoFLUX. The aim of the investigation is to characterize the role of groundwater flow through the active layer as well as through and/or below the permafrost. The data set is composed of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) surveys, which are well-known geophysical techniques for the characterization of glacial and hydrological processes and features. Overall, 18 ERT profiles and 10 GPR lines were acquired, for a total surveyed length of 9.3 km. The data have been organized in a consistent repository that includes both raw and processed (filtered) data. Some representative examples of 2D models of the subsurface are provided, that is, 2D sections of electrical resistivity (from ERT) and 2D radargrams (from GPR). The resistivity models revealed deep resistive structures, probably related to the heterogeneous permafrost, which are often interrupted by electrically conductive regions that may relate to aquifers and/or faults. The interpretation of these data can support the identification of the active layer, the occurrence of spatial variation in soil conditions at depth, and the presence of groundwater flow through the permafrost. To a large extent, the data set can provide new insight into the hydrological dynamics and polar and climate change studies of the Ny-Ålesund area. The data set is of major relevance because there are few geophysical data published about the Ny-Ålesund area. Moreover, these geophysical data can foster multidisciplinary scientific collaborations in the fields of hydrology, glaciology, climate, geology, and geomorphology, etc. The geophysical data are provided in a free repository and can be accessed at https://doi.org/10.5281/zenodo.10260056 (Pace et al., 2023).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1