Joy S. Xiang, Danielle M. Schafer, Katherine L. Rothamel, Gene W. Yeo
{"title":"利用基于 CLIP 的方法解码蛋白质-RNA 之间的相互作用","authors":"Joy S. Xiang, Danielle M. Schafer, Katherine L. Rothamel, Gene W. Yeo","doi":"10.1038/s41576-024-00749-3","DOIUrl":null,"url":null,"abstract":"Protein–RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA — in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) — have helped to map the RNA interactome, yielding transcriptome-wide protein–RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein–RNA interactions. RNA-binding proteins regulate the lifecycle of RNA, and their dysregulation is associated with diseases such as cancer and neurodegeneration. Using methods based on ultraviolet crosslinking followed by immunoprecipitation (CLIP), we can now begin to decode the mechanisms of the interactions between RNA-binding proteins and RNA. This Review discusses recent insights from and future applications of these methodologies.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 12","pages":"879-895"},"PeriodicalIF":39.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding protein–RNA interactions using CLIP-based methodologies\",\"authors\":\"Joy S. Xiang, Danielle M. Schafer, Katherine L. Rothamel, Gene W. Yeo\",\"doi\":\"10.1038/s41576-024-00749-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein–RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA — in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) — have helped to map the RNA interactome, yielding transcriptome-wide protein–RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein–RNA interactions. RNA-binding proteins regulate the lifecycle of RNA, and their dysregulation is associated with diseases such as cancer and neurodegeneration. Using methods based on ultraviolet crosslinking followed by immunoprecipitation (CLIP), we can now begin to decode the mechanisms of the interactions between RNA-binding proteins and RNA. This Review discusses recent insights from and future applications of these methodologies.\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"25 12\",\"pages\":\"879-895\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41576-024-00749-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41576-024-00749-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Decoding protein–RNA interactions using CLIP-based methodologies
Protein–RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA — in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) — have helped to map the RNA interactome, yielding transcriptome-wide protein–RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein–RNA interactions. RNA-binding proteins regulate the lifecycle of RNA, and their dysregulation is associated with diseases such as cancer and neurodegeneration. Using methods based on ultraviolet crosslinking followed by immunoprecipitation (CLIP), we can now begin to decode the mechanisms of the interactions between RNA-binding proteins and RNA. This Review discusses recent insights from and future applications of these methodologies.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.