CCD-Rice:分辨率为 30 米的中国水稻长期分布数据集

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-07-09 DOI:10.5194/essd-2024-147
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, Wenping Yuan
{"title":"CCD-Rice:分辨率为 30 米的中国水稻长期分布数据集","authors":"Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, Wenping Yuan","doi":"10.5194/essd-2024-147","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> As one of the most widely cultivated grain crops, paddy rice is a vital staple food in China and plays a crucial role in ensuring food security. Over the past decades, the planting area of paddy rice in China has shown substantial variability. Yet, there are no long-term high-resolution rice distribution maps in China, which hinders our ability to estimate greenhouse gas fluxes and crop production. This study developed a new optical satellite-based rice mapping method using a machine learning model and appropriate data preprocessing strategies to address the challenges of cloud contamination and missing data in optical remote sensing observations. This study produced CCD-Rice (China Crop Dataset-Rice), the first high-resolution rice distribution dataset in China from 1990 to 2016. Based on 391,659 validation samples, the overall accuracy of the distribution maps in each provincial administrative region averaged 90.26 %. Compared with 20,759 county-level statistical data, the coefficients of determination (<em>R</em><sup>2</sup>) of single- and double-season rice in each year averaged 0.84 and 0.80, respectively. The distribution maps can be obtained at https://doi.org/10.57760/sciencedb.15865 (Shen et al., 2024a).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"36 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution\",\"authors\":\"Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, Wenping Yuan\",\"doi\":\"10.5194/essd-2024-147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> As one of the most widely cultivated grain crops, paddy rice is a vital staple food in China and plays a crucial role in ensuring food security. Over the past decades, the planting area of paddy rice in China has shown substantial variability. Yet, there are no long-term high-resolution rice distribution maps in China, which hinders our ability to estimate greenhouse gas fluxes and crop production. This study developed a new optical satellite-based rice mapping method using a machine learning model and appropriate data preprocessing strategies to address the challenges of cloud contamination and missing data in optical remote sensing observations. This study produced CCD-Rice (China Crop Dataset-Rice), the first high-resolution rice distribution dataset in China from 1990 to 2016. Based on 391,659 validation samples, the overall accuracy of the distribution maps in each provincial administrative region averaged 90.26 %. Compared with 20,759 county-level statistical data, the coefficients of determination (<em>R</em><sup>2</sup>) of single- and double-season rice in each year averaged 0.84 and 0.80, respectively. The distribution maps can be obtained at https://doi.org/10.57760/sciencedb.15865 (Shen et al., 2024a).\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-147\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-147","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要水稻是中国种植面积最大的粮食作物之一,是中国重要的主粮,在保障粮食安全方面发挥着重要作用。在过去的几十年中,中国水稻的种植面积出现了很大的变化。然而,中国没有长期的高分辨率水稻分布图,这阻碍了我们估算温室气体通量和作物产量的能力。本研究利用机器学习模型和适当的数据预处理策略,开发了一种新的基于光学卫星的水稻测绘方法,以解决光学遥感观测中云层污染和数据缺失的难题。该研究制作了中国第一个高分辨率水稻分布数据集 CCD-Rice(China Crop Dataset-Rice),时间跨度为 1990 年至 2016 年。基于 391 659 个验证样本,各省级行政区域分布图的总体精度平均为 90.26%。与 20759 个县级统计数据相比,每年单季稻和双季稻的判定系数(R2)平均分别为 0.84 和 0.80。分布图见 https://doi.org/10.57760/sciencedb.15865(Shen et al.,2024a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution
Abstract. As one of the most widely cultivated grain crops, paddy rice is a vital staple food in China and plays a crucial role in ensuring food security. Over the past decades, the planting area of paddy rice in China has shown substantial variability. Yet, there are no long-term high-resolution rice distribution maps in China, which hinders our ability to estimate greenhouse gas fluxes and crop production. This study developed a new optical satellite-based rice mapping method using a machine learning model and appropriate data preprocessing strategies to address the challenges of cloud contamination and missing data in optical remote sensing observations. This study produced CCD-Rice (China Crop Dataset-Rice), the first high-resolution rice distribution dataset in China from 1990 to 2016. Based on 391,659 validation samples, the overall accuracy of the distribution maps in each provincial administrative region averaged 90.26 %. Compared with 20,759 county-level statistical data, the coefficients of determination (R2) of single- and double-season rice in each year averaged 0.84 and 0.80, respectively. The distribution maps can be obtained at https://doi.org/10.57760/sciencedb.15865 (Shen et al., 2024a).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1