在近红外光照射下,氧空位和 Ru 取代之间的协同作用引发的选择性 CO2 光还原成 CH4。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-07-09 DOI:10.1002/advs.202405668
Jun Li, Xinglong Liu, Xi Wu, Zhongyi Liu, Zaiwang Zhao, Yifeng Liu, Shixue Dou, Yao Xiao
{"title":"在近红外光照射下,氧空位和 Ru 取代之间的协同作用引发的选择性 CO2 光还原成 CH4。","authors":"Jun Li, Xinglong Liu, Xi Wu, Zhongyi Liu, Zaiwang Zhao, Yifeng Liu, Shixue Dou, Yao Xiao","doi":"10.1002/advs.202405668","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared (NIR) light powdered CO<sub>2</sub> photoreduction reaction is generally restricted to the separation efficiency of photogenerated carriers and the supply of active hydrogen (*H). Herein, the study reports a retrofitting hydrogenated MoO<sub>3-x</sub> (H-MoO<sub>3-x</sub>) nanosheet photocatalysts with Ru single atom substitution (Ru@H-MoO<sub>3-x</sub>) fabricated by one-step solvothermal method. Experiments together with theoretical calculations demonstrate that the synergistic effect of Ru substitution and oxygen vacancy can not only inhibit the recombination of photogenerated carriers, but also facilitate the CO<sub>2</sub> adsorption/activation as well as the supply of *H. Compared with H-MoO<sub>3-x</sub>, the Ru@H-MoO<sub>3-x</sub> exhibit more favorable formation of *CHO in the process of *CO conversion due to the fast *H generation on electron-rich Ru sites and transfer to *CO intermediates, leading to the preferential photoreduction of CO<sub>2</sub> to CH<sub>4</sub> with high selectivity. The optimized Ru@H-MoO<sub>3-x</sub> exhibits a superior CO<sub>2</sub> photoreduction activity with CH<sub>4</sub> evolution rate of 111.6 and 39.0 µmol g<sub>catalyst</sub> <sup>-1</sup> under full spectrum and NIR light irradiation, respectively, which is 8.8 and 15.0 times much higher than that of H-MoO<sub>3-x</sub>. This work provides an in-depth understanding at the atomic level on the design of NIR responsive photocatalyst for achieving the goal of carbon neutrality.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective CO<sub>2</sub> Photoreduction into CH<sub>4</sub> Triggered by the Synergy between Oxygen Vacancy and Ru Substitution under Near-Infrared Light Irradiation.\",\"authors\":\"Jun Li, Xinglong Liu, Xi Wu, Zhongyi Liu, Zaiwang Zhao, Yifeng Liu, Shixue Dou, Yao Xiao\",\"doi\":\"10.1002/advs.202405668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Near-infrared (NIR) light powdered CO<sub>2</sub> photoreduction reaction is generally restricted to the separation efficiency of photogenerated carriers and the supply of active hydrogen (*H). Herein, the study reports a retrofitting hydrogenated MoO<sub>3-x</sub> (H-MoO<sub>3-x</sub>) nanosheet photocatalysts with Ru single atom substitution (Ru@H-MoO<sub>3-x</sub>) fabricated by one-step solvothermal method. Experiments together with theoretical calculations demonstrate that the synergistic effect of Ru substitution and oxygen vacancy can not only inhibit the recombination of photogenerated carriers, but also facilitate the CO<sub>2</sub> adsorption/activation as well as the supply of *H. Compared with H-MoO<sub>3-x</sub>, the Ru@H-MoO<sub>3-x</sub> exhibit more favorable formation of *CHO in the process of *CO conversion due to the fast *H generation on electron-rich Ru sites and transfer to *CO intermediates, leading to the preferential photoreduction of CO<sub>2</sub> to CH<sub>4</sub> with high selectivity. The optimized Ru@H-MoO<sub>3-x</sub> exhibits a superior CO<sub>2</sub> photoreduction activity with CH<sub>4</sub> evolution rate of 111.6 and 39.0 µmol g<sub>catalyst</sub> <sup>-1</sup> under full spectrum and NIR light irradiation, respectively, which is 8.8 and 15.0 times much higher than that of H-MoO<sub>3-x</sub>. This work provides an in-depth understanding at the atomic level on the design of NIR responsive photocatalyst for achieving the goal of carbon neutrality.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202405668\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202405668","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外(NIR)光粉末二氧化碳光还原反应通常受限于光生载流子的分离效率和活性氢(*H)的供应。在此,本研究报告了一种通过一步溶热法制造的Ru单原子取代氢化MoO3-x(H-MoO3-x)纳米片光催化剂(Ru@H-MoO3-x)。实验和理论计算证明,Ru 取代和氧空位的协同效应不仅能抑制光生载流子的重组,还能促进 CO2 的吸附/活化以及 *H 的供应。与 H-MoO3-x 相比,Ru@H-MoO3-x 在 *CO 转化过程中更有利于 *CHO 的形成,这是因为 *H 在富电子 Ru 位点上快速生成并转移到 *CO 中间体,从而以高选择性优先光还原 CO2 到 CH4。优化后的 Ru@H-MoO3-x 具有优异的 CO2 光还原活性,在全光谱和近红外光照射下,CH4 演化率分别为 111.6 和 39.0 µmol gcatalyst -1 ,分别是 H-MoO3-x 的 8.8 和 15.0 倍。这项研究从原子水平上深入理解了如何设计近红外响应型光催化剂,以实现碳中和的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective CO2 Photoreduction into CH4 Triggered by the Synergy between Oxygen Vacancy and Ru Substitution under Near-Infrared Light Irradiation.

Near-infrared (NIR) light powdered CO2 photoreduction reaction is generally restricted to the separation efficiency of photogenerated carriers and the supply of active hydrogen (*H). Herein, the study reports a retrofitting hydrogenated MoO3-x (H-MoO3-x) nanosheet photocatalysts with Ru single atom substitution (Ru@H-MoO3-x) fabricated by one-step solvothermal method. Experiments together with theoretical calculations demonstrate that the synergistic effect of Ru substitution and oxygen vacancy can not only inhibit the recombination of photogenerated carriers, but also facilitate the CO2 adsorption/activation as well as the supply of *H. Compared with H-MoO3-x, the Ru@H-MoO3-x exhibit more favorable formation of *CHO in the process of *CO conversion due to the fast *H generation on electron-rich Ru sites and transfer to *CO intermediates, leading to the preferential photoreduction of CO2 to CH4 with high selectivity. The optimized Ru@H-MoO3-x exhibits a superior CO2 photoreduction activity with CH4 evolution rate of 111.6 and 39.0 µmol gcatalyst -1 under full spectrum and NIR light irradiation, respectively, which is 8.8 and 15.0 times much higher than that of H-MoO3-x. This work provides an in-depth understanding at the atomic level on the design of NIR responsive photocatalyst for achieving the goal of carbon neutrality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Exfoliated 2D Nanosheet-Based Conjugated Polymer Composites with P-N Heterojunction Interfaces for Highly Efficient Electrocatalytic Hydrogen Evolution. Extracellular Matrix Sulfation in the Tumor Microenvironment Stimulates Cancer Stemness and Invasiveness. Forkhead Box Protein K1 Promotes Chronic Kidney Disease by Driving Glycolysis in Tubular Epithelial Cells. Origami Morphing Surfaces with Arrayed Quasi-Rigid-Foldable Polyhedrons. Parity-Frequency-Space Elastic Spin Control of Wave Routing in Topological Phononic Circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1