Patrycja Ciesielska, Slawomir Lasota, Sylwia Bobis-Wozowicz, Zbigniew Madeja
{"title":"TGF-β 在小鼠 3T3 成纤维细胞体外电接触反应中的作用","authors":"Patrycja Ciesielska, Slawomir Lasota, Sylwia Bobis-Wozowicz, Zbigniew Madeja","doi":"10.3389/abp.2024.12993","DOIUrl":null,"url":null,"abstract":"<p><p>Endogenous electric fields (EFs) serve as a crucial signal to guide cell movement in processes such as wound healing, embryonic development, and cancer metastasis. However, the mechanism underlying cell electrotaxis remains poorly understood. A plausible hypothesis suggests that electrophoretic or electroosmotic forces may rearrange charged components of the cell membrane, including receptors for chemoattractants which induce asymmetric signaling and directional motility. This study aimed to explore the role of Transforming Growth Factor Beta (TGFβ) signaling in the electrotactic reaction of 3T3 fibroblasts. Our findings indicate that inhibiting canonical and several non-canonical signaling pathways originating from the activated TGF-β receptor does not hinder the directed migration of 3T3 cells to the cathode. Furthermore, suppression of TGF-β receptor expression does not eliminate the directional migration effect of 3T3 cells in the electric field. Additionally, there is no observed redistribution of the TGF-β receptor in the electric field. However, our studies affirm the significant involvement of Phosphoinositide 3-Kinase (PI3K) in electrotaxis, suggesting that in our model, its activation is likely associated with factors independent of TGFβ action.</p>","PeriodicalId":6984,"journal":{"name":"Acta biochimica Polonica","volume":"71 ","pages":"12993"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231101/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of TGF-β in the electrotactic reaction of mouse 3T3 fibroblasts <i>in vitro</i>.\",\"authors\":\"Patrycja Ciesielska, Slawomir Lasota, Sylwia Bobis-Wozowicz, Zbigniew Madeja\",\"doi\":\"10.3389/abp.2024.12993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endogenous electric fields (EFs) serve as a crucial signal to guide cell movement in processes such as wound healing, embryonic development, and cancer metastasis. However, the mechanism underlying cell electrotaxis remains poorly understood. A plausible hypothesis suggests that electrophoretic or electroosmotic forces may rearrange charged components of the cell membrane, including receptors for chemoattractants which induce asymmetric signaling and directional motility. This study aimed to explore the role of Transforming Growth Factor Beta (TGFβ) signaling in the electrotactic reaction of 3T3 fibroblasts. Our findings indicate that inhibiting canonical and several non-canonical signaling pathways originating from the activated TGF-β receptor does not hinder the directed migration of 3T3 cells to the cathode. Furthermore, suppression of TGF-β receptor expression does not eliminate the directional migration effect of 3T3 cells in the electric field. Additionally, there is no observed redistribution of the TGF-β receptor in the electric field. However, our studies affirm the significant involvement of Phosphoinositide 3-Kinase (PI3K) in electrotaxis, suggesting that in our model, its activation is likely associated with factors independent of TGFβ action.</p>\",\"PeriodicalId\":6984,\"journal\":{\"name\":\"Acta biochimica Polonica\",\"volume\":\"71 \",\"pages\":\"12993\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica Polonica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/abp.2024.12993\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica Polonica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/abp.2024.12993","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role of TGF-β in the electrotactic reaction of mouse 3T3 fibroblasts in vitro.
Endogenous electric fields (EFs) serve as a crucial signal to guide cell movement in processes such as wound healing, embryonic development, and cancer metastasis. However, the mechanism underlying cell electrotaxis remains poorly understood. A plausible hypothesis suggests that electrophoretic or electroosmotic forces may rearrange charged components of the cell membrane, including receptors for chemoattractants which induce asymmetric signaling and directional motility. This study aimed to explore the role of Transforming Growth Factor Beta (TGFβ) signaling in the electrotactic reaction of 3T3 fibroblasts. Our findings indicate that inhibiting canonical and several non-canonical signaling pathways originating from the activated TGF-β receptor does not hinder the directed migration of 3T3 cells to the cathode. Furthermore, suppression of TGF-β receptor expression does not eliminate the directional migration effect of 3T3 cells in the electric field. Additionally, there is no observed redistribution of the TGF-β receptor in the electric field. However, our studies affirm the significant involvement of Phosphoinositide 3-Kinase (PI3K) in electrotaxis, suggesting that in our model, its activation is likely associated with factors independent of TGFβ action.
期刊介绍:
Acta Biochimica Polonica is a journal covering enzymology and metabolism, membranes and bioenergetics, gene structure and expression, protein, nucleic acid and carbohydrate structure and metabolism.