Alan J Mouton, Nikaela M Aitken, Jemylle G Morato, Katherine R O'Quinn, Jussara M do Carmo, Alexandre A da Silva, Ana C M Omoto, Xuan Li, Zhen Wang, Alexandra C Schrimpe-Rutledge, Simona G Codreanu, Stacy D Sherrod, John A McLean, Joshua K Stanford, Jordan A Brown, John E Hall
{"title":"谷氨酰胺代谢可改善心肌梗死后的左心室功能,但不能改善巨噬细胞介导的炎症。","authors":"Alan J Mouton, Nikaela M Aitken, Jemylle G Morato, Katherine R O'Quinn, Jussara M do Carmo, Alexandre A da Silva, Ana C M Omoto, Xuan Li, Zhen Wang, Alexandra C Schrimpe-Rutledge, Simona G Codreanu, Stacy D Sherrod, John A McLean, Joshua K Stanford, Jordan A Brown, John E Hall","doi":"10.1152/ajpcell.00272.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at <i>days 1</i>, <i>3</i>, and <i>7</i> after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at <i>days 1</i>, <i>3</i>, and <i>7</i> after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.<b>NEW & NOTEWORTHY</b> Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction.\",\"authors\":\"Alan J Mouton, Nikaela M Aitken, Jemylle G Morato, Katherine R O'Quinn, Jussara M do Carmo, Alexandre A da Silva, Ana C M Omoto, Xuan Li, Zhen Wang, Alexandra C Schrimpe-Rutledge, Simona G Codreanu, Stacy D Sherrod, John A McLean, Joshua K Stanford, Jordan A Brown, John E Hall\",\"doi\":\"10.1152/ajpcell.00272.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at <i>days 1</i>, <i>3</i>, and <i>7</i> after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at <i>days 1</i>, <i>3</i>, and <i>7</i> after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.<b>NEW & NOTEWORTHY</b> Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00272.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00272.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction.
Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.