心脏、脾脏和骨髓在心力衰竭中的相互作用:脾脏髓外造血的作用。

IF 4.5 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Heart Failure Reviews Pub Date : 2024-09-01 Epub Date: 2024-07-10 DOI:10.1007/s10741-024-10418-6
Hiroaki Hiraiwa, Yoshimitsu Yura, Takahiro Okumura, Toyoaki Murohara
{"title":"心脏、脾脏和骨髓在心力衰竭中的相互作用:脾脏髓外造血的作用。","authors":"Hiroaki Hiraiwa, Yoshimitsu Yura, Takahiro Okumura, Toyoaki Murohara","doi":"10.1007/s10741-024-10418-6","DOIUrl":null,"url":null,"abstract":"<p><p>Improvements in therapies for heart failure with preserved ejection fraction (HFpEF) are crucial for improving patient outcomes and quality of life. Although HFpEF is the predominant heart failure type among older individuals, its prognosis is often poor owing to the lack of effective therapies. The roles of the spleen and bone marrow are often overlooked in the context of HFpEF. Recent studies suggest that the spleen and bone marrow could play key roles in HFpEF, especially in relation to inflammation and immune responses. The bone marrow can increase production of certain immune cells that can migrate to the heart and contribute to disease. The spleen can contribute to immune responses that either protect or exacerbate heart failure. Extramedullary hematopoiesis in the spleen could play a crucial role in HFpEF. Increased metabolic activity in the spleen, immune cell production and mobilization to the heart, and concomitant cytokine production may occur in heart failure. This leads to systemic chronic inflammation, along with an imbalance of immune cells (macrophages) in the heart, resulting in chronic inflammation and progressive fibrosis, potentially leading to decreased cardiac function. The bone marrow and spleen are involved in altered iron metabolism and anemia, which also contribute to HFpEF. This review presents the concept of an interplay between the heart, spleen, and bone marrow in the setting of HFpEF, with a particular focus on extramedullary hematopoiesis in the spleen. The aim of this review is to discern whether the spleen can serve as a new therapeutic target for HFpEF.</p>","PeriodicalId":12950,"journal":{"name":"Heart Failure Reviews","volume":" ","pages":"1049-1063"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306273/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interplay of the heart, spleen, and bone marrow in heart failure: the role of splenic extramedullary hematopoiesis.\",\"authors\":\"Hiroaki Hiraiwa, Yoshimitsu Yura, Takahiro Okumura, Toyoaki Murohara\",\"doi\":\"10.1007/s10741-024-10418-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improvements in therapies for heart failure with preserved ejection fraction (HFpEF) are crucial for improving patient outcomes and quality of life. Although HFpEF is the predominant heart failure type among older individuals, its prognosis is often poor owing to the lack of effective therapies. The roles of the spleen and bone marrow are often overlooked in the context of HFpEF. Recent studies suggest that the spleen and bone marrow could play key roles in HFpEF, especially in relation to inflammation and immune responses. The bone marrow can increase production of certain immune cells that can migrate to the heart and contribute to disease. The spleen can contribute to immune responses that either protect or exacerbate heart failure. Extramedullary hematopoiesis in the spleen could play a crucial role in HFpEF. Increased metabolic activity in the spleen, immune cell production and mobilization to the heart, and concomitant cytokine production may occur in heart failure. This leads to systemic chronic inflammation, along with an imbalance of immune cells (macrophages) in the heart, resulting in chronic inflammation and progressive fibrosis, potentially leading to decreased cardiac function. The bone marrow and spleen are involved in altered iron metabolism and anemia, which also contribute to HFpEF. This review presents the concept of an interplay between the heart, spleen, and bone marrow in the setting of HFpEF, with a particular focus on extramedullary hematopoiesis in the spleen. The aim of this review is to discern whether the spleen can serve as a new therapeutic target for HFpEF.</p>\",\"PeriodicalId\":12950,\"journal\":{\"name\":\"Heart Failure Reviews\",\"volume\":\" \",\"pages\":\"1049-1063\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart Failure Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10741-024-10418-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart Failure Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10741-024-10418-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

改进射血分数保留型心力衰竭(HFpEF)的治疗方法对于改善患者的预后和生活质量至关重要。虽然射血分数保留型心力衰竭是老年人的主要心力衰竭类型,但由于缺乏有效的疗法,其预后往往不佳。在 HFpEF 中,脾脏和骨髓的作用往往被忽视。最近的研究表明,脾脏和骨髓可在高频低氧血症中发挥关键作用,尤其是在炎症和免疫反应方面。骨髓可增加某些免疫细胞的产生,这些细胞可迁移到心脏并导致疾病。脾脏可促进免疫反应,从而保护或加重心衰。脾脏的髓外造血可能在高频心衰中发挥关键作用。心力衰竭时,脾脏的代谢活动、免疫细胞的产生和向心脏的动员以及伴随的细胞因子的产生都可能增加。这导致全身慢性炎症,同时心脏中的免疫细胞(巨噬细胞)失衡,造成慢性炎症和进行性纤维化,可能导致心脏功能下降。骨髓和脾脏参与了铁代谢的改变和贫血,这也是导致高频心衰的原因之一。本综述介绍了在 HFpEF 情况下心脏、脾脏和骨髓之间相互作用的概念,尤其侧重于脾脏的髓外造血。本综述旨在探讨脾脏是否可作为治疗 HFpEF 的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interplay of the heart, spleen, and bone marrow in heart failure: the role of splenic extramedullary hematopoiesis.

Improvements in therapies for heart failure with preserved ejection fraction (HFpEF) are crucial for improving patient outcomes and quality of life. Although HFpEF is the predominant heart failure type among older individuals, its prognosis is often poor owing to the lack of effective therapies. The roles of the spleen and bone marrow are often overlooked in the context of HFpEF. Recent studies suggest that the spleen and bone marrow could play key roles in HFpEF, especially in relation to inflammation and immune responses. The bone marrow can increase production of certain immune cells that can migrate to the heart and contribute to disease. The spleen can contribute to immune responses that either protect or exacerbate heart failure. Extramedullary hematopoiesis in the spleen could play a crucial role in HFpEF. Increased metabolic activity in the spleen, immune cell production and mobilization to the heart, and concomitant cytokine production may occur in heart failure. This leads to systemic chronic inflammation, along with an imbalance of immune cells (macrophages) in the heart, resulting in chronic inflammation and progressive fibrosis, potentially leading to decreased cardiac function. The bone marrow and spleen are involved in altered iron metabolism and anemia, which also contribute to HFpEF. This review presents the concept of an interplay between the heart, spleen, and bone marrow in the setting of HFpEF, with a particular focus on extramedullary hematopoiesis in the spleen. The aim of this review is to discern whether the spleen can serve as a new therapeutic target for HFpEF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heart Failure Reviews
Heart Failure Reviews 医学-心血管系统
CiteScore
10.40
自引率
2.20%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Heart Failure Reviews is an international journal which develops links between basic scientists and clinical investigators, creating a unique, interdisciplinary dialogue focused on heart failure, its pathogenesis and treatment. The journal accordingly publishes papers in both basic and clinical research fields. Topics covered include clinical and surgical approaches to therapy, basic pharmacology, biochemistry, molecular biology, pathology, and electrophysiology. The reviews are comprehensive, expanding the reader''s knowledge base and awareness of current research and new findings in this rapidly growing field of cardiovascular medicine. All reviews are thoroughly peer-reviewed before publication.
期刊最新文献
Could SGLT2 inhibitors improve outcomes in patients with heart failure and significant valvular heart disease? Need for action. Maternal heart failure: state-of-the-art review. Diagnosis and management of hypertrophic cardiomyopathy: European vs. American guidelines. Sodium-glucose co-transporter 2 inhibitors in left ventricular assist device and heart transplant recipients: a mini-review. The road to renal denervation for hypertension and beyond (HF): two decades of failed, succeeded, and to be determined.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1