Antonio Montagnoli, Andrew T Hudak, Pasi Raumonen, Bruno Lasserre, Mattia Terzaghi, Carlos A Silva, Benjamin C Bright, Lee A Vierling, Bruna N de Vasconcellos, Donato Chiatante, R Kasten Dumroese
{"title":"地面激光扫描和低磁场数字化技术为 32 年树龄的松柏提供了相似的建筑粗根特征。","authors":"Antonio Montagnoli, Andrew T Hudak, Pasi Raumonen, Bruno Lasserre, Mattia Terzaghi, Carlos A Silva, Benjamin C Bright, Lee A Vierling, Bruna N de Vasconcellos, Donato Chiatante, R Kasten Dumroese","doi":"10.1186/s13007-024-01229-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity. Low Magnetic Field Digitization coupled with AMAPmod (botAnique et Modelisation de l'Architecture des Plantes) software has been the best-performing method for describing root system architecture and providing reliable measurements of coarse root traits, but the pace and scale of data collection remain difficult. Instrumentation and applications related to Terrestrial Laser Scanning (TLS) have advanced appreciably, and when coupled with Quantitative Structure Models (QSM), have shown some potential toward robust measurements of tree root systems. Here we compare, we believe for the first time, these two methodologies by analyzing the root system of 32-year-old Pinus ponderosa trees.</p><p><strong>Results: </strong>In general, at the total root system level and by root-order class, both methods yielded comparable values for the root traits volume, length, and number. QSM for each root trait was highly sensitive to the root size (i.e., input parameter PatchDiam) and models were optimized when discrete PatchDiam ranges were specified for each trait. When examining roots in the four cardinal direction sectors, we observed differences between methodologies for length and number depending on root order but not volume.</p><p><strong>Conclusions: </strong>We believe that TLS and QSM could facilitate rapid data collection, perhaps in situ, while providing quantitative accuracy, especially at the total root system level. If more detailed measures of root system architecture are desired, a TLS method would benefit from additional scans at differing perspectives, avoiding gravitational displacement to the extent possible, while subsampling roots by hand to calibrate and validate QSM models. Despite some unresolved logistical challenges, our results suggest that future use of TLS may hold promise for quantifying tree root system architecture in a rapid, replicable manner.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"102"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Terrestrial laser scanning and low magnetic field digitization yield similar architectural coarse root traits for 32-year-old Pinus ponderosa trees.\",\"authors\":\"Antonio Montagnoli, Andrew T Hudak, Pasi Raumonen, Bruno Lasserre, Mattia Terzaghi, Carlos A Silva, Benjamin C Bright, Lee A Vierling, Bruna N de Vasconcellos, Donato Chiatante, R Kasten Dumroese\",\"doi\":\"10.1186/s13007-024-01229-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity. Low Magnetic Field Digitization coupled with AMAPmod (botAnique et Modelisation de l'Architecture des Plantes) software has been the best-performing method for describing root system architecture and providing reliable measurements of coarse root traits, but the pace and scale of data collection remain difficult. Instrumentation and applications related to Terrestrial Laser Scanning (TLS) have advanced appreciably, and when coupled with Quantitative Structure Models (QSM), have shown some potential toward robust measurements of tree root systems. Here we compare, we believe for the first time, these two methodologies by analyzing the root system of 32-year-old Pinus ponderosa trees.</p><p><strong>Results: </strong>In general, at the total root system level and by root-order class, both methods yielded comparable values for the root traits volume, length, and number. QSM for each root trait was highly sensitive to the root size (i.e., input parameter PatchDiam) and models were optimized when discrete PatchDiam ranges were specified for each trait. When examining roots in the four cardinal direction sectors, we observed differences between methodologies for length and number depending on root order but not volume.</p><p><strong>Conclusions: </strong>We believe that TLS and QSM could facilitate rapid data collection, perhaps in situ, while providing quantitative accuracy, especially at the total root system level. If more detailed measures of root system architecture are desired, a TLS method would benefit from additional scans at differing perspectives, avoiding gravitational displacement to the extent possible, while subsampling roots by hand to calibrate and validate QSM models. Despite some unresolved logistical challenges, our results suggest that future use of TLS may hold promise for quantifying tree root system architecture in a rapid, replicable manner.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"102\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01229-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01229-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Terrestrial laser scanning and low magnetic field digitization yield similar architectural coarse root traits for 32-year-old Pinus ponderosa trees.
Background: Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity. Low Magnetic Field Digitization coupled with AMAPmod (botAnique et Modelisation de l'Architecture des Plantes) software has been the best-performing method for describing root system architecture and providing reliable measurements of coarse root traits, but the pace and scale of data collection remain difficult. Instrumentation and applications related to Terrestrial Laser Scanning (TLS) have advanced appreciably, and when coupled with Quantitative Structure Models (QSM), have shown some potential toward robust measurements of tree root systems. Here we compare, we believe for the first time, these two methodologies by analyzing the root system of 32-year-old Pinus ponderosa trees.
Results: In general, at the total root system level and by root-order class, both methods yielded comparable values for the root traits volume, length, and number. QSM for each root trait was highly sensitive to the root size (i.e., input parameter PatchDiam) and models were optimized when discrete PatchDiam ranges were specified for each trait. When examining roots in the four cardinal direction sectors, we observed differences between methodologies for length and number depending on root order but not volume.
Conclusions: We believe that TLS and QSM could facilitate rapid data collection, perhaps in situ, while providing quantitative accuracy, especially at the total root system level. If more detailed measures of root system architecture are desired, a TLS method would benefit from additional scans at differing perspectives, avoiding gravitational displacement to the extent possible, while subsampling roots by hand to calibrate and validate QSM models. Despite some unresolved logistical challenges, our results suggest that future use of TLS may hold promise for quantifying tree root system architecture in a rapid, replicable manner.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.