{"title":"针对大脑功能连接性的协变量辅助主回归贝叶斯估计。","authors":"Hyung G Park","doi":"10.1093/biostatistics/kxae023","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian estimation of covariate assisted principal regression for brain functional connectivity.\",\"authors\":\"Hyung G Park\",\"doi\":\"10.1093/biostatistics/kxae023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.