温度梯度对功能性果实性状的影响:以海拔换温度的方法。

IF 2.3 Q2 ECOLOGY BMC ecology and evolution Pub Date : 2024-07-09 DOI:10.1186/s12862-024-02271-w
Laura Gómez-Devia, Omer Nevo
{"title":"温度梯度对功能性果实性状的影响:以海拔换温度的方法。","authors":"Laura Gómez-Devia, Omer Nevo","doi":"10.1186/s12862-024-02271-w","DOIUrl":null,"url":null,"abstract":"<p><p>Fruit traits mediate animal-plant interactions and have to a large degree evolved to match the sensory capacities and morphology of their respective dispersers. At the same time, fruit traits are affected by local environmental factors, which may affect frugivore-plant trait match. Temperature has been identified as a major factor with a strong effect on the development of fruits, which is of serious concern because of the rising threat of global warming. Nonetheless, this primarily originates from studies on domesticated cultivars in often controlled environments. Little is known on the effect of rising temperatures on fruit traits of wild species and the implications this could have to seed dispersal networks, including downstream consequences to biodiversity and ecosystem functioning. In a case study of five plant species from eastern Madagascar, we addressed this using the elevation-for-temperature approach and examined whether a temperature gradient is systematically associated with variation in fruit traits relevant for animal foraging and fruit selection. We sampled across a gradient representing a temperature gradient of 1.5-2.6 °C, corresponding to IPCC projections. The results showed that in most cases there was no significant effect of temperature on the traits evaluated, although some species showed different effects, particularly fruit chemical profiles. This suggests that in these species warming within this range alone is not likely to drive substantial changes in dispersal networks. While no systemic effects were found, the results also indicate that the effect of temperature on fruit traits differs across species and may lead to mismatches in specific animal-plant interactions.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"94"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of temperature gradient on functional fruit traits: an elevation-for-temperature approach.\",\"authors\":\"Laura Gómez-Devia, Omer Nevo\",\"doi\":\"10.1186/s12862-024-02271-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fruit traits mediate animal-plant interactions and have to a large degree evolved to match the sensory capacities and morphology of their respective dispersers. At the same time, fruit traits are affected by local environmental factors, which may affect frugivore-plant trait match. Temperature has been identified as a major factor with a strong effect on the development of fruits, which is of serious concern because of the rising threat of global warming. Nonetheless, this primarily originates from studies on domesticated cultivars in often controlled environments. Little is known on the effect of rising temperatures on fruit traits of wild species and the implications this could have to seed dispersal networks, including downstream consequences to biodiversity and ecosystem functioning. In a case study of five plant species from eastern Madagascar, we addressed this using the elevation-for-temperature approach and examined whether a temperature gradient is systematically associated with variation in fruit traits relevant for animal foraging and fruit selection. We sampled across a gradient representing a temperature gradient of 1.5-2.6 °C, corresponding to IPCC projections. The results showed that in most cases there was no significant effect of temperature on the traits evaluated, although some species showed different effects, particularly fruit chemical profiles. This suggests that in these species warming within this range alone is not likely to drive substantial changes in dispersal networks. While no systemic effects were found, the results also indicate that the effect of temperature on fruit traits differs across species and may lead to mismatches in specific animal-plant interactions.</p>\",\"PeriodicalId\":93910,\"journal\":{\"name\":\"BMC ecology and evolution\",\"volume\":\"24 1\",\"pages\":\"94\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC ecology and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-024-02271-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02271-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

果实的性状是动物与植物之间相互作用的媒介,在很大程度上,果实性状的进化与其各自传播者的感官能力和形态相匹配。同时,果实的性状也受到当地环境因素的影响,这些因素可能会影响食草动物与植物性状的匹配。温度被认为是对果实发育有重大影响的一个主要因素,由于全球变暖的威胁日益加剧,这一点引起了人们的严重关注。尽管如此,这主要源于在通常受控环境中对驯化栽培品种的研究。人们对气温升高对野生物种果实性状的影响及其对种子传播网络的影响,包括对生物多样性和生态系统功能的下游影响知之甚少。在对马达加斯加东部五个植物物种的案例研究中,我们采用海拔-温度法解决了这一问题,并考察了温度梯度是否系统地与动物觅食和果实选择相关的果实性状变化有关。我们在代表 1.5-2.6 ° C 温度梯度的梯度上采样,该温度梯度与 IPCC 的预测相一致。结果表明,在大多数情况下,温度对所评估的性状没有显著影响,但有些物种表现出不同的影响,特别是果实化学特征。这表明,在这些物种中,仅在这一范围内升温不太可能导致扩散网络发生重大变化。虽然没有发现系统性影响,但结果也表明,温度对果实性状的影响在不同物种之间存在差异,可能会导致特定的动物-植物相互作用失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of temperature gradient on functional fruit traits: an elevation-for-temperature approach.

Fruit traits mediate animal-plant interactions and have to a large degree evolved to match the sensory capacities and morphology of their respective dispersers. At the same time, fruit traits are affected by local environmental factors, which may affect frugivore-plant trait match. Temperature has been identified as a major factor with a strong effect on the development of fruits, which is of serious concern because of the rising threat of global warming. Nonetheless, this primarily originates from studies on domesticated cultivars in often controlled environments. Little is known on the effect of rising temperatures on fruit traits of wild species and the implications this could have to seed dispersal networks, including downstream consequences to biodiversity and ecosystem functioning. In a case study of five plant species from eastern Madagascar, we addressed this using the elevation-for-temperature approach and examined whether a temperature gradient is systematically associated with variation in fruit traits relevant for animal foraging and fruit selection. We sampled across a gradient representing a temperature gradient of 1.5-2.6 °C, corresponding to IPCC projections. The results showed that in most cases there was no significant effect of temperature on the traits evaluated, although some species showed different effects, particularly fruit chemical profiles. This suggests that in these species warming within this range alone is not likely to drive substantial changes in dispersal networks. While no systemic effects were found, the results also indicate that the effect of temperature on fruit traits differs across species and may lead to mismatches in specific animal-plant interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Greater risk-taking by non-native than native shrimp: an advantage in a human-disturbed environment? Survival cost sharing among altruistic full siblings in Mendelian population. Next-generation phylogeography reveals unanticipated population history and climate and human impacts on the endangered floodplain bitterling (Acheilognathus longipinnis). Repeated evolution on oceanic islands: comparative genomics reveals species-specific processes in birds. Unravelling spatial scale effects on elevational diversity gradients: insights from montane small mammals in Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1