A. S. Donahue, P. M. Caldwell, L. Bertagna, H. Beydoun, P. A. Bogenschutz, A. M. Bradley, T. C. Clevenger, J. Foucar, C. Golaz, O. Guba, W. Hannah, B. R. Hillman, J. N. Johnson, N. Keen, W. Lin, B. Singh, S. Sreepathi, M. A. Taylor, J. Tian, C. R. Terai, P. A. Ullrich, X. Yuan, Y. Zhang
{"title":"向超大规模和更大规模迈进--简单云解析 E3SM 大气模型 (SCREAM),一种用于云解析尺度的高性能便携式全球大气模型","authors":"A. S. Donahue, P. M. Caldwell, L. Bertagna, H. Beydoun, P. A. Bogenschutz, A. M. Bradley, T. C. Clevenger, J. Foucar, C. Golaz, O. Guba, W. Hannah, B. R. Hillman, J. N. Johnson, N. Keen, W. Lin, B. Singh, S. Sreepathi, M. A. Taylor, J. Tian, C. R. Terai, P. A. Ullrich, X. Yuan, Y. Zhang","doi":"10.1029/2024MS004314","DOIUrl":null,"url":null,"abstract":"<p>The new generation of heterogeneous CPU/GPU computer systems offer much greater computational performance but are not yet widely used for climate modeling. One reason for this is that traditional climate models were written before GPUs were available and would require an extensive overhaul to run on these new machines. In addition, even conventional “high–resolution” simulations don't currently provide enough parallel work to keep GPUs busy, so the benefits of such overhaul would be limited for the types of simulations climate scientists are accustomed to. The vision of the Simple Cloud-Resolving Energy Exascale Earth System (E3SM) Atmosphere Model (SCREAM) project is to create a global atmospheric model with the architecture to efficiently use GPUs and horizontal resolution sufficient to fully take advantage of GPU parallelism. After 5 years of model development, SCREAM is finally ready for use. In this paper, we describe the design of this new code, its performance on both CPU and heterogeneous machines, and its ability to simulate real-world climate via a set of four 40 day simulations covering all 4 seasons of the year.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004314","citationCount":"0","resultStr":"{\"title\":\"To Exascale and Beyond—The Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM), a Performance Portable Global Atmosphere Model for Cloud-Resolving Scales\",\"authors\":\"A. S. Donahue, P. M. Caldwell, L. Bertagna, H. Beydoun, P. A. Bogenschutz, A. M. Bradley, T. C. Clevenger, J. Foucar, C. Golaz, O. Guba, W. Hannah, B. R. Hillman, J. N. Johnson, N. Keen, W. Lin, B. Singh, S. Sreepathi, M. A. Taylor, J. Tian, C. R. Terai, P. A. Ullrich, X. Yuan, Y. Zhang\",\"doi\":\"10.1029/2024MS004314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The new generation of heterogeneous CPU/GPU computer systems offer much greater computational performance but are not yet widely used for climate modeling. One reason for this is that traditional climate models were written before GPUs were available and would require an extensive overhaul to run on these new machines. In addition, even conventional “high–resolution” simulations don't currently provide enough parallel work to keep GPUs busy, so the benefits of such overhaul would be limited for the types of simulations climate scientists are accustomed to. The vision of the Simple Cloud-Resolving Energy Exascale Earth System (E3SM) Atmosphere Model (SCREAM) project is to create a global atmospheric model with the architecture to efficiently use GPUs and horizontal resolution sufficient to fully take advantage of GPU parallelism. After 5 years of model development, SCREAM is finally ready for use. In this paper, we describe the design of this new code, its performance on both CPU and heterogeneous machines, and its ability to simulate real-world climate via a set of four 40 day simulations covering all 4 seasons of the year.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004314\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004314\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004314","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
To Exascale and Beyond—The Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM), a Performance Portable Global Atmosphere Model for Cloud-Resolving Scales
The new generation of heterogeneous CPU/GPU computer systems offer much greater computational performance but are not yet widely used for climate modeling. One reason for this is that traditional climate models were written before GPUs were available and would require an extensive overhaul to run on these new machines. In addition, even conventional “high–resolution” simulations don't currently provide enough parallel work to keep GPUs busy, so the benefits of such overhaul would be limited for the types of simulations climate scientists are accustomed to. The vision of the Simple Cloud-Resolving Energy Exascale Earth System (E3SM) Atmosphere Model (SCREAM) project is to create a global atmospheric model with the architecture to efficiently use GPUs and horizontal resolution sufficient to fully take advantage of GPU parallelism. After 5 years of model development, SCREAM is finally ready for use. In this paper, we describe the design of this new code, its performance on both CPU and heterogeneous machines, and its ability to simulate real-world climate via a set of four 40 day simulations covering all 4 seasons of the year.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.