测试稀疏纵向数据的独立性

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2024-07-08 DOI:10.1093/biomet/asae035
Changbo Zhu, Junwen Yao, Jane-Ling Wang
{"title":"测试稀疏纵向数据的独立性","authors":"Changbo Zhu, Junwen Yao, Jane-Ling Wang","doi":"10.1093/biomet/asae035","DOIUrl":null,"url":null,"abstract":"Summary With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Independence for Sparse Longitudinal Data\",\"authors\":\"Changbo Zhu, Junwen Yao, Jane-Ling Wang\",\"doi\":\"10.1093/biomet/asae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asae035\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 随着科学技术的发展,越来越多的数据以函数的形式被收集起来。一对随机函数的基本问题是测试它们是否独立。如果对每个受试者的随机轨迹进行不规则的稀疏采样,这个问题就变得相当具有挑战性。换句话说,每个随机函数只在几个时间点上采样,而这些时间点会随着受试者的不同而变化。此外,观察到的数据可能包含噪声。据我们所知,文献中没有一致的测试方法来测试稀疏观测功能数据的独立性。我们在这项工作中证明,同时测试点独立性是可行的。测试统计量是通过积分点距协方差(Székely et al.蒙特卡罗模拟和真实数据分析进一步验证了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing Independence for Sparse Longitudinal Data
Summary With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1