通过一锅水热法合成 MoS2@CoFe-MOF 催化剂,增强 MoS2 纳米花与双金属 MOF 之间的电子相互作用,实现高效氧进化

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-07-10 DOI:10.1039/D4NJ02380C
Jiahui Li, Yufen Wang, Qinyuan Yu and Xuedong Wei
{"title":"通过一锅水热法合成 MoS2@CoFe-MOF 催化剂,增强 MoS2 纳米花与双金属 MOF 之间的电子相互作用,实现高效氧进化","authors":"Jiahui Li, Yufen Wang, Qinyuan Yu and Xuedong Wei","doi":"10.1039/D4NJ02380C","DOIUrl":null,"url":null,"abstract":"<p >A kind of MoS<small><sub>2</sub></small>@CoFe-MOF electrocatalyst was prepared on carbon cloth by a one-pot hydrothermal method. Excellent electrocatalytic activity of MoS<small><sub>2</sub></small>@CoFe-MOF is demonstrated, and the catalyst has overpotentials of 220 mV and 405 mV at 10 mA cm<small><sup>−2</sup></small> and 50 mA cm<small><sup>−2</sup></small>, respectively. It is found that the MoS<small><sub>2</sub></small>@CoFe-MOF electrode exhibits excellent stability at the end of operation for 48 000 s, and it has the highest electrochemically active specific surface area and the lowest charge transfer resistance. This work proposes a promising approach in energy chemistry for hydrogen production by electrolysis of water using electrocatalysts composed of non precious transition metal sulfides and bimetallic MOFs.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoS2@CoFe-MOF catalysts achieved by one-pot hydrothermal synthesis enhanced electronic interactions between MoS2 nanoflowers and a bimetallic MOF for efficient oxygen evolution†\",\"authors\":\"Jiahui Li, Yufen Wang, Qinyuan Yu and Xuedong Wei\",\"doi\":\"10.1039/D4NJ02380C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A kind of MoS<small><sub>2</sub></small>@CoFe-MOF electrocatalyst was prepared on carbon cloth by a one-pot hydrothermal method. Excellent electrocatalytic activity of MoS<small><sub>2</sub></small>@CoFe-MOF is demonstrated, and the catalyst has overpotentials of 220 mV and 405 mV at 10 mA cm<small><sup>−2</sup></small> and 50 mA cm<small><sup>−2</sup></small>, respectively. It is found that the MoS<small><sub>2</sub></small>@CoFe-MOF electrode exhibits excellent stability at the end of operation for 48 000 s, and it has the highest electrochemically active specific surface area and the lowest charge transfer resistance. This work proposes a promising approach in energy chemistry for hydrogen production by electrolysis of water using electrocatalysts composed of non precious transition metal sulfides and bimetallic MOFs.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02380c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02380c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用一锅水热法在碳布上制备了一种MoS2@CoFe-MOF电催化剂。结果表明,MoS2@CoFe-MOF 具有优异的电催化活性。它能分别用 220 mV 和 405 mV 的过电位驱动 10 mA cm-2 和 50 mA cm-2。结果表明,MoS2@CoFe-MOF 电极在 48000 秒结束时表现出极佳的稳定性,并且具有最高的电化学活性比表面积和最低的电荷转移电阻。这项研究为能源化学领域利用非贵重过渡金属硫化物和双金属 MOF 组成的电催化剂电解水制氢提出了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoS2@CoFe-MOF catalysts achieved by one-pot hydrothermal synthesis enhanced electronic interactions between MoS2 nanoflowers and a bimetallic MOF for efficient oxygen evolution†

A kind of MoS2@CoFe-MOF electrocatalyst was prepared on carbon cloth by a one-pot hydrothermal method. Excellent electrocatalytic activity of MoS2@CoFe-MOF is demonstrated, and the catalyst has overpotentials of 220 mV and 405 mV at 10 mA cm−2 and 50 mA cm−2, respectively. It is found that the MoS2@CoFe-MOF electrode exhibits excellent stability at the end of operation for 48 000 s, and it has the highest electrochemically active specific surface area and the lowest charge transfer resistance. This work proposes a promising approach in energy chemistry for hydrogen production by electrolysis of water using electrocatalysts composed of non precious transition metal sulfides and bimetallic MOFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Supramolecular assembly of phenanthrene-DNA conjugates into light-harvesting nanospheres. Back cover Back cover Exploring supramolecular architectures in Mn(iii) two-compartment o-vanhd Schiff base complexes: insights from apical aqua ligands and bond valence sum analysis† A fluorescent biosensor based on boronic acid functionalized carbon dots for identification and sensitive detection of Gram-positive bacteria†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1