Renxian Xie, Lin Chen, Jason P. Morgan, Yongshun John Chen
{"title":"从大陆地层之间的流变对比得出的各种岩石圈变形模式:二维数值模拟的启示","authors":"Renxian Xie, Lin Chen, Jason P. Morgan, Yongshun John Chen","doi":"10.5194/se-15-789-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Continents are formed by the amalgamation of numerous micro-terranes and island arcs, so they have spatially varying lithosphere strengths. The crème brûlée (CB) model and the jelly sandwich (JS) model have been commonly used to describe continental lithosphere strength–depth variations. Depending on the strength of the continental lower crust, the CB and JS models can be further subdivided into two subclasses in which the I subclass (CB-I and JS-I) and II subclass (CB-II and JS-II), respectively, have a strong or weak lower crust. During the continental collision, lithosphere deformation is the byproduct of the comprehensive interaction of multiple terranes. Here we used 2-D thermomechanical numerical models that contain three continental terranes to systematically explore the effects of terranes with various strengths on continental deformation and studied the effects of different rheological assumptions on terrane deformation. We found four types of lithosphere deformation patterns: collision, subduction, thickening and delamination, and replacement. These simulation patterns are seen in observed deformation patterns and structures in East Asia, suggesting they are likely to be naturally occurring modes of intracontinental orogenesis.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":"40 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations\",\"authors\":\"Renxian Xie, Lin Chen, Jason P. Morgan, Yongshun John Chen\",\"doi\":\"10.5194/se-15-789-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Continents are formed by the amalgamation of numerous micro-terranes and island arcs, so they have spatially varying lithosphere strengths. The crème brûlée (CB) model and the jelly sandwich (JS) model have been commonly used to describe continental lithosphere strength–depth variations. Depending on the strength of the continental lower crust, the CB and JS models can be further subdivided into two subclasses in which the I subclass (CB-I and JS-I) and II subclass (CB-II and JS-II), respectively, have a strong or weak lower crust. During the continental collision, lithosphere deformation is the byproduct of the comprehensive interaction of multiple terranes. Here we used 2-D thermomechanical numerical models that contain three continental terranes to systematically explore the effects of terranes with various strengths on continental deformation and studied the effects of different rheological assumptions on terrane deformation. We found four types of lithosphere deformation patterns: collision, subduction, thickening and delamination, and replacement. These simulation patterns are seen in observed deformation patterns and structures in East Asia, suggesting they are likely to be naturally occurring modes of intracontinental orogenesis.\",\"PeriodicalId\":21912,\"journal\":{\"name\":\"Solid Earth\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/se-15-789-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/se-15-789-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要大陆是由众多微地壳和岛弧合并而成的,因此它们的岩石圈强度在空间上各不相同。奶油布丁(CB)模型和果冻三明治(JS)模型常用来描述大陆岩石圈强度-深度变化。根据大陆下地壳强度的不同,CB 和 JS 模型可进一步细分为两个亚类,其中 I 亚类(CB-I 和 JS-I)和 II 亚类(CB-II 和 JS-II)分别具有强或弱的下地壳。在大陆碰撞过程中,岩石圈变形是多地块综合作用的副产品。在此,我们利用包含三块大陆岩石圈的二维热力学数值模型,系统地探讨了不同强度的岩石圈对大陆变形的影响,并研究了不同流变学假设对岩石圈变形的影响。我们发现了四种岩石圈变形模式:碰撞、俯冲、增厚和分层以及置换。这些模拟模式在东亚观测到的变形模式和结构中都可以看到,表明它们很可能是自然发生的大陆内部造山模式。
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Abstract. Continents are formed by the amalgamation of numerous micro-terranes and island arcs, so they have spatially varying lithosphere strengths. The crème brûlée (CB) model and the jelly sandwich (JS) model have been commonly used to describe continental lithosphere strength–depth variations. Depending on the strength of the continental lower crust, the CB and JS models can be further subdivided into two subclasses in which the I subclass (CB-I and JS-I) and II subclass (CB-II and JS-II), respectively, have a strong or weak lower crust. During the continental collision, lithosphere deformation is the byproduct of the comprehensive interaction of multiple terranes. Here we used 2-D thermomechanical numerical models that contain three continental terranes to systematically explore the effects of terranes with various strengths on continental deformation and studied the effects of different rheological assumptions on terrane deformation. We found four types of lithosphere deformation patterns: collision, subduction, thickening and delamination, and replacement. These simulation patterns are seen in observed deformation patterns and structures in East Asia, suggesting they are likely to be naturally occurring modes of intracontinental orogenesis.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.