通过转录组、元基因组和机器视觉分析揭示林下模式种植的山茶的生长和转录调控情况

IF 3.4 3区 农林科学 Q2 ENVIRONMENTAL SCIENCES Journal of Soil Science and Plant Nutrition Pub Date : 2024-07-08 DOI:10.1007/s42729-024-01916-5
Jialin Liao, Shaolei Xu, Lisha Zhong, Jiayu Liang, Jianxiu Liu, Yuxing Shi, Jiashuang Qin, Yanhua Mo, Jiangming Ma, Yang Huang, Yu Liang
{"title":"通过转录组、元基因组和机器视觉分析揭示林下模式种植的山茶的生长和转录调控情况","authors":"Jialin Liao, Shaolei Xu, Lisha Zhong, Jiayu Liang, Jianxiu Liu, Yuxing Shi, Jiashuang Qin, Yanhua Mo, Jiangming Ma, Yang Huang, Yu Liang","doi":"10.1007/s42729-024-01916-5","DOIUrl":null,"url":null,"abstract":"<p><i>Camellia sinensis</i> is a significant economic and medical plant. The plant is short and thrives in shaded environments, making it suitable for cultivation under forest canopies. However, the mechanisms governing the growth of <i>C. sinensis</i> in understory conditions need to be fully understood. The study aims to delve into the growth regulatory mechanisms of <i>C. sinensis</i> in understory mode and the impact of the environment on its growth efficiency and bioactive compound synthesis. Through physiological measurements, transcriptomics, metagenomics, and machine vision analysis, a systematic investigation of <i>C. sinensis</i> characteristics in different environments was conducted. Transcriptome data comparisons unveiled key gene expression changes, and the role of these genes in biosynthetic pathways was validated using quantitative Polymerase Chain Reaction (qPCR). Concurrently, metagenomic analysis of soil microbial communities revealed the environmental effects on microbial diversity. <i>C. sinensis</i> in understory mode exhibited higher stomatal density and smaller pore sizes under low light and humidity conditions; phenolic and flavonoid compounds were identified as the main regulatory pathways, with enhanced expression of key genes such as <i>Dihydroflavonol-4-Reductase</i> (<i>DFR</i>), <i>Anthocyanidin Reductase</i> (<i>ANR</i>), and <i>Leucoanthocyanidin Reductase</i> (<i>LAR</i>), which promoted the synthesis of tea polyphenols and lignin, the abundance of Acidobacteria might be related to the growth of <i>C. sinensis</i> in understory mode. Furthermore, machine vision models indicated that <i>C. sinensis</i> displayed higher growth efficiency in the understory mode environment. This research discovered the characteristics of <i>C. sinensis</i> in understory mode and elucidated its growth efficiency in understory mode by modulating phenolic and flavonoid metabolism key genes and promoting the accumulation of secondary metabolites. Differences in soil microbial communities could also affect vegetation coverage and other aspects. These findings provide a scientific basis for optimizing understory mode cultivation and highlight the crucial importance of multidisciplinary approaches in understanding plant adaptability.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"25 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and Transcriptional Regulation of Camellia sinensis Planted in Understory Mode Revealed by Transcriptomic, Metagenomic, and Machine-Vision Analyses\",\"authors\":\"Jialin Liao, Shaolei Xu, Lisha Zhong, Jiayu Liang, Jianxiu Liu, Yuxing Shi, Jiashuang Qin, Yanhua Mo, Jiangming Ma, Yang Huang, Yu Liang\",\"doi\":\"10.1007/s42729-024-01916-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Camellia sinensis</i> is a significant economic and medical plant. The plant is short and thrives in shaded environments, making it suitable for cultivation under forest canopies. However, the mechanisms governing the growth of <i>C. sinensis</i> in understory conditions need to be fully understood. The study aims to delve into the growth regulatory mechanisms of <i>C. sinensis</i> in understory mode and the impact of the environment on its growth efficiency and bioactive compound synthesis. Through physiological measurements, transcriptomics, metagenomics, and machine vision analysis, a systematic investigation of <i>C. sinensis</i> characteristics in different environments was conducted. Transcriptome data comparisons unveiled key gene expression changes, and the role of these genes in biosynthetic pathways was validated using quantitative Polymerase Chain Reaction (qPCR). Concurrently, metagenomic analysis of soil microbial communities revealed the environmental effects on microbial diversity. <i>C. sinensis</i> in understory mode exhibited higher stomatal density and smaller pore sizes under low light and humidity conditions; phenolic and flavonoid compounds were identified as the main regulatory pathways, with enhanced expression of key genes such as <i>Dihydroflavonol-4-Reductase</i> (<i>DFR</i>), <i>Anthocyanidin Reductase</i> (<i>ANR</i>), and <i>Leucoanthocyanidin Reductase</i> (<i>LAR</i>), which promoted the synthesis of tea polyphenols and lignin, the abundance of Acidobacteria might be related to the growth of <i>C. sinensis</i> in understory mode. Furthermore, machine vision models indicated that <i>C. sinensis</i> displayed higher growth efficiency in the understory mode environment. This research discovered the characteristics of <i>C. sinensis</i> in understory mode and elucidated its growth efficiency in understory mode by modulating phenolic and flavonoid metabolism key genes and promoting the accumulation of secondary metabolites. Differences in soil microbial communities could also affect vegetation coverage and other aspects. These findings provide a scientific basis for optimizing understory mode cultivation and highlight the crucial importance of multidisciplinary approaches in understanding plant adaptability.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-01916-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01916-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

山茶是一种重要的经济和药用植物。这种植物植株矮小,在荫蔽环境中生长旺盛,因此适合在林冠下栽培。然而,在林下条件下野生山茶的生长机制仍有待全面了解。本研究旨在深入研究林下模式下中华皂苷的生长调控机制,以及环境对其生长效率和生物活性化合物合成的影响。通过生理测量、转录组学、元基因组学和机器视觉分析,对不同环境下中华皂苷的特性进行了系统研究。转录组数据比较揭示了关键基因的表达变化,并利用定量聚合酶链式反应(qPCR)验证了这些基因在生物合成途径中的作用。同时,土壤微生物群落的元基因组分析揭示了环境对微生物多样性的影响。C.在低光照和低湿度条件下,处于林下模式的中华绒杉表现出较高的气孔密度和较小的气孔尺寸;酚类和类黄酮化合物被确定为主要调控途径,二氢黄酮醇-4-还原酶(DFR)、花青素还原酶(ANR)和亮橘花青素还原酶(LAR)等关键基因的表达增强,促进了茶多酚和木质素的合成。因此,酸性细菌的大量繁殖可能与茶树在林下模式下的生长有关。此外,机器视觉模型表明,在林下模式环境中,C. sinensis 的生长效率更高。本研究通过调节酚类和类黄酮代谢关键基因以及促进次生代谢物的积累,发现了C. sinensis在林下模式下的特征,并阐明了其在林下模式下的生长效率。土壤微生物群落的差异也会影响植被覆盖率和其他方面。这些发现为优化林下模式栽培提供了科学依据,并凸显了多学科方法在了解植物适应性方面的至关重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth and Transcriptional Regulation of Camellia sinensis Planted in Understory Mode Revealed by Transcriptomic, Metagenomic, and Machine-Vision Analyses

Camellia sinensis is a significant economic and medical plant. The plant is short and thrives in shaded environments, making it suitable for cultivation under forest canopies. However, the mechanisms governing the growth of C. sinensis in understory conditions need to be fully understood. The study aims to delve into the growth regulatory mechanisms of C. sinensis in understory mode and the impact of the environment on its growth efficiency and bioactive compound synthesis. Through physiological measurements, transcriptomics, metagenomics, and machine vision analysis, a systematic investigation of C. sinensis characteristics in different environments was conducted. Transcriptome data comparisons unveiled key gene expression changes, and the role of these genes in biosynthetic pathways was validated using quantitative Polymerase Chain Reaction (qPCR). Concurrently, metagenomic analysis of soil microbial communities revealed the environmental effects on microbial diversity. C. sinensis in understory mode exhibited higher stomatal density and smaller pore sizes under low light and humidity conditions; phenolic and flavonoid compounds were identified as the main regulatory pathways, with enhanced expression of key genes such as Dihydroflavonol-4-Reductase (DFR), Anthocyanidin Reductase (ANR), and Leucoanthocyanidin Reductase (LAR), which promoted the synthesis of tea polyphenols and lignin, the abundance of Acidobacteria might be related to the growth of C. sinensis in understory mode. Furthermore, machine vision models indicated that C. sinensis displayed higher growth efficiency in the understory mode environment. This research discovered the characteristics of C. sinensis in understory mode and elucidated its growth efficiency in understory mode by modulating phenolic and flavonoid metabolism key genes and promoting the accumulation of secondary metabolites. Differences in soil microbial communities could also affect vegetation coverage and other aspects. These findings provide a scientific basis for optimizing understory mode cultivation and highlight the crucial importance of multidisciplinary approaches in understanding plant adaptability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soil Science and Plant Nutrition
Journal of Soil Science and Plant Nutrition Agricultural and Biological Sciences-Soil Science
CiteScore
5.90
自引率
10.30%
发文量
331
审稿时长
9 months
期刊介绍: The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science. Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration. Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies. Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome. The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.
期刊最新文献
Assessment of Management Practices for Improving Productivity, Profitability, and Energy-Carbon-Water Use Efficiency of Intensive Rice-toria-Sweet Corn System in Eastern India Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1