基于多观测重构和集合卡尔曼滤波的污染物源和扩散系数联合识别

IF 3.9 3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Stochastic Environmental Research and Risk Assessment Pub Date : 2024-07-09 DOI:10.1007/s00477-024-02767-3
Li Jing, Jun Kong, Mingjie Pan, Tong Zhou, Teng Xu
{"title":"基于多观测重构和集合卡尔曼滤波的污染物源和扩散系数联合识别","authors":"Li Jing, Jun Kong, Mingjie Pan, Tong Zhou, Teng Xu","doi":"10.1007/s00477-024-02767-3","DOIUrl":null,"url":null,"abstract":"<p>Accurate and efficient identification of pollution sources is a key process that assists in the treatment of water pollution incidents. The ensemble Kalman filter (EnKF) has been proven to be an effective approach for identifying pollution source parameters (e.g., source location, release time, and mass released). In this paper, a method involving multiple observations of reconstruction (MOR) is proposed for reconstructing multidimensional state vectors for assimilation based on pollutant concentration monitoring techniques. The newly reconstructed state variables have dimensionless characteristics that decouple the source mass from the parameter group to be identified before assimilation is performed. This approach can mitigate the interference of assimilation caused by nonmain source parameters. As a result, the pollution sources and material dispersion coefficients can be simultaneously identified at limited observation sites. Then, a set of synthetic numerical examples with 7 scenarios is assembled to investigate and compare the unique characteristics of the derived state variables during assimilation. A laboratory experiment for unknown parameter identification based on monitoring the chemical oxygen demand (COD) concentration is carried out in an annular flume to verify the applicability of the method in real events. The results show that the EnKF combined with the MOR method based on the decoupling pattern performs well in identifying pollution sources and dispersion coefficients simultaneously. The method can still perform excellently in identifying parameters in practice when some data in the observation sequences are lost, with relative errors of pollution source parameters being controlled within 4%. The relative errors of the identified transverse and longitudinal dispersion coefficients are 39% and 12%, respectively. Overall, by evaluating the original data, reconstructing the dataset, and combining it with the EnKF method, it is proven that the MOR–EnKF method is an effective measure for identifying high-dimensional unknown parameter groups.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"6 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint identification of contaminant source and dispersion coefficients based on multi-observed reconstruction and ensemble Kalman filtering\",\"authors\":\"Li Jing, Jun Kong, Mingjie Pan, Tong Zhou, Teng Xu\",\"doi\":\"10.1007/s00477-024-02767-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and efficient identification of pollution sources is a key process that assists in the treatment of water pollution incidents. The ensemble Kalman filter (EnKF) has been proven to be an effective approach for identifying pollution source parameters (e.g., source location, release time, and mass released). In this paper, a method involving multiple observations of reconstruction (MOR) is proposed for reconstructing multidimensional state vectors for assimilation based on pollutant concentration monitoring techniques. The newly reconstructed state variables have dimensionless characteristics that decouple the source mass from the parameter group to be identified before assimilation is performed. This approach can mitigate the interference of assimilation caused by nonmain source parameters. As a result, the pollution sources and material dispersion coefficients can be simultaneously identified at limited observation sites. Then, a set of synthetic numerical examples with 7 scenarios is assembled to investigate and compare the unique characteristics of the derived state variables during assimilation. A laboratory experiment for unknown parameter identification based on monitoring the chemical oxygen demand (COD) concentration is carried out in an annular flume to verify the applicability of the method in real events. The results show that the EnKF combined with the MOR method based on the decoupling pattern performs well in identifying pollution sources and dispersion coefficients simultaneously. The method can still perform excellently in identifying parameters in practice when some data in the observation sequences are lost, with relative errors of pollution source parameters being controlled within 4%. The relative errors of the identified transverse and longitudinal dispersion coefficients are 39% and 12%, respectively. Overall, by evaluating the original data, reconstructing the dataset, and combining it with the EnKF method, it is proven that the MOR–EnKF method is an effective measure for identifying high-dimensional unknown parameter groups.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02767-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02767-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

准确有效地识别污染源是协助处理水污染事件的关键过程。集合卡尔曼滤波器(EnKF)已被证明是识别污染源参数(如污染源位置、释放时间和释放质量)的有效方法。本文提出了一种涉及多重观测重构(MOR)的方法,用于重构多维状态向量,以便根据污染物浓度监测技术进行同化。新重建的状态变量具有无量纲特征,可在同化前将污染源质量与待识别的参数组解耦。这种方法可以减轻非主要污染源参数对同化的干扰。因此,可以在有限的观测点同时识别污染源和物质扩散系数。然后,通过一组包含 7 种情况的合成数值示例来研究和比较同化过程中得出的状态变量的独特特征。在环形水槽中进行了基于监测化学需氧量(COD)浓度的未知参数识别实验室实验,以验证该方法在实际事件中的适用性。结果表明,EnKF 与基于解耦模式的 MOR 方法相结合,在同时识别污染源和扩散系数方面表现出色。在实际应用中,当观测序列中的部分数据丢失时,该方法仍能出色地识别参数,污染源参数的相对误差控制在 4% 以内。识别出的横向和纵向色散系数的相对误差分别为 39% 和 12%。总之,通过对原始数据的评估、数据集的重建以及与 EnKF 方法的结合,证明 MOR-EnKF 方法是识别高维未知参数组的有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint identification of contaminant source and dispersion coefficients based on multi-observed reconstruction and ensemble Kalman filtering

Accurate and efficient identification of pollution sources is a key process that assists in the treatment of water pollution incidents. The ensemble Kalman filter (EnKF) has been proven to be an effective approach for identifying pollution source parameters (e.g., source location, release time, and mass released). In this paper, a method involving multiple observations of reconstruction (MOR) is proposed for reconstructing multidimensional state vectors for assimilation based on pollutant concentration monitoring techniques. The newly reconstructed state variables have dimensionless characteristics that decouple the source mass from the parameter group to be identified before assimilation is performed. This approach can mitigate the interference of assimilation caused by nonmain source parameters. As a result, the pollution sources and material dispersion coefficients can be simultaneously identified at limited observation sites. Then, a set of synthetic numerical examples with 7 scenarios is assembled to investigate and compare the unique characteristics of the derived state variables during assimilation. A laboratory experiment for unknown parameter identification based on monitoring the chemical oxygen demand (COD) concentration is carried out in an annular flume to verify the applicability of the method in real events. The results show that the EnKF combined with the MOR method based on the decoupling pattern performs well in identifying pollution sources and dispersion coefficients simultaneously. The method can still perform excellently in identifying parameters in practice when some data in the observation sequences are lost, with relative errors of pollution source parameters being controlled within 4%. The relative errors of the identified transverse and longitudinal dispersion coefficients are 39% and 12%, respectively. Overall, by evaluating the original data, reconstructing the dataset, and combining it with the EnKF method, it is proven that the MOR–EnKF method is an effective measure for identifying high-dimensional unknown parameter groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.50%
发文量
189
审稿时长
3.8 months
期刊介绍: Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas: - Spatiotemporal analysis and mapping of natural processes. - Enviroinformatics. - Environmental risk assessment, reliability analysis and decision making. - Surface and subsurface hydrology and hydraulics. - Multiphase porous media domains and contaminant transport modelling. - Hazardous waste site characterization. - Stochastic turbulence and random hydrodynamic fields. - Chaotic and fractal systems. - Random waves and seafloor morphology. - Stochastic atmospheric and climate processes. - Air pollution and quality assessment research. - Modern geostatistics. - Mechanisms of pollutant formation, emission, exposure and absorption. - Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection. - Bioinformatics. - Probabilistic methods in ecology and population biology. - Epidemiological investigations. - Models using stochastic differential equations stochastic or partial differential equations. - Hazardous waste site characterization.
期刊最新文献
Hybrid method for rainfall-induced regional landslide susceptibility mapping Prediction of urban flood inundation using Bayesian convolutional neural networks Unravelling complexities: a study on geopolitical dynamics, economic complexity, R&D impact on green innovation in China AHP and FAHP-based multi-criteria analysis for suitable dam location analysis: a case study of the Bagmati Basin, Nepal Risk and retraction: asymmetric nexus between monetary policy uncertainty and eco-friendly investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1