{"title":"继承还是放弃:从一般领域学习更好的特定领域子网络,实现多领域 NMT","authors":"Jinlei Xu, Yonghua Wen, Yan Xiang, Shuting Jiang, Yuxin Huang, Zhengtao Yu","doi":"10.1007/s13042-024-02253-w","DOIUrl":null,"url":null,"abstract":"<p>Multi-domain NMT aims to develop a parameter-sharing model for translating general and specific domains, such as biology, legal, etc., which often struggle with the parameter interference problem. Existing approaches typically tackle this issue by learning a domain-specific sub-network for each domain equally, but they ignore the significant data imbalance problem across domains. For instance, the training data for the general domain often outweighs the biological domain tenfold. In this paper, we observe a natural similarity between the general and specific domains, including shared vocabulary or similar sentence structure. We propose a novel parameter inheritance strategy to adaptively learn domain-specific child networks from the general domain. Our approach employs gradient similarity as the criterion for determining which parameters should be inherited or discarded between the general and specific domains. Extensive experiments on several multi-domain NMT corpora demonstrate that our method significantly outperforms several strong baselines. In addition, our method exhibits remarkable generalization performance in adapting to few-shot multi-domain NMT scenarios. Further investigations reveal that our method achieves good interpretability because the parameters learned by the child network from the general domain depend on the interconnectedness between the specific domain and the general domain.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inherit or discard: learning better domain-specific child networks from the general domain for multi-domain NMT\",\"authors\":\"Jinlei Xu, Yonghua Wen, Yan Xiang, Shuting Jiang, Yuxin Huang, Zhengtao Yu\",\"doi\":\"10.1007/s13042-024-02253-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-domain NMT aims to develop a parameter-sharing model for translating general and specific domains, such as biology, legal, etc., which often struggle with the parameter interference problem. Existing approaches typically tackle this issue by learning a domain-specific sub-network for each domain equally, but they ignore the significant data imbalance problem across domains. For instance, the training data for the general domain often outweighs the biological domain tenfold. In this paper, we observe a natural similarity between the general and specific domains, including shared vocabulary or similar sentence structure. We propose a novel parameter inheritance strategy to adaptively learn domain-specific child networks from the general domain. Our approach employs gradient similarity as the criterion for determining which parameters should be inherited or discarded between the general and specific domains. Extensive experiments on several multi-domain NMT corpora demonstrate that our method significantly outperforms several strong baselines. In addition, our method exhibits remarkable generalization performance in adapting to few-shot multi-domain NMT scenarios. Further investigations reveal that our method achieves good interpretability because the parameters learned by the child network from the general domain depend on the interconnectedness between the specific domain and the general domain.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02253-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02253-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Inherit or discard: learning better domain-specific child networks from the general domain for multi-domain NMT
Multi-domain NMT aims to develop a parameter-sharing model for translating general and specific domains, such as biology, legal, etc., which often struggle with the parameter interference problem. Existing approaches typically tackle this issue by learning a domain-specific sub-network for each domain equally, but they ignore the significant data imbalance problem across domains. For instance, the training data for the general domain often outweighs the biological domain tenfold. In this paper, we observe a natural similarity between the general and specific domains, including shared vocabulary or similar sentence structure. We propose a novel parameter inheritance strategy to adaptively learn domain-specific child networks from the general domain. Our approach employs gradient similarity as the criterion for determining which parameters should be inherited or discarded between the general and specific domains. Extensive experiments on several multi-domain NMT corpora demonstrate that our method significantly outperforms several strong baselines. In addition, our method exhibits remarkable generalization performance in adapting to few-shot multi-domain NMT scenarios. Further investigations reveal that our method achieves good interpretability because the parameters learned by the child network from the general domain depend on the interconnectedness between the specific domain and the general domain.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems