二维材料中零模式的设计与单元素可重编程性

Daniel Revier, Molly Carton, Jeffrey I. Lipton
{"title":"二维材料中零模式的设计与单元素可重编程性","authors":"Daniel Revier, Molly Carton, Jeffrey I. Lipton","doi":"arxiv-2407.04934","DOIUrl":null,"url":null,"abstract":"Mechanical extremal materials, a class of metamaterials that exist at the\nbounds of elastic theory, possess the extraordinary capability to engineer any\ndesired elastic behavior by harnessing mechanical zero modes -- deformation\nmodes that demand minimal or no elastic energy. However, the potential for\narbitrary construction and reprogramming of metamaterials remains largely\nunrealized, primarily due to significant challenges in qualitatively\ntransforming zero modes within the confines of existing metamaterial design\nframeworks. In this work, we show a method for explicitly defining and in situ\nreprogramming zero modes of two-dimensional extremal materials by employing\nstraight-line mechanisms (SLMs) and planar symmetry, which prescribe and\ncoordinate the zero modes, respectively. We design, test, and reprogram\ncentimeter-scale isotropic, orthotropic, and chiral extremal materials by\nreorienting the SLMs in place, enabling these materials to smoothly and\nreversibly interpolate between extremal modalities (e.g., unimode to bimode)\nand material properties (e.g., negative to positive Poisson's ratios) without\nchanging the metamaterial's global structure. Our methodology provides a\nstraightforward and explicit strategy for the design and tuning of all\nvarieties of two-dimensional extremal materials, enabling arbitrary and dynamic\nmechanical metamaterial construction to completely cover the gamut of elastic\nproperties.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Reprogrammability of Zero Modes in 2D Materials from a Single Element\",\"authors\":\"Daniel Revier, Molly Carton, Jeffrey I. Lipton\",\"doi\":\"arxiv-2407.04934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical extremal materials, a class of metamaterials that exist at the\\nbounds of elastic theory, possess the extraordinary capability to engineer any\\ndesired elastic behavior by harnessing mechanical zero modes -- deformation\\nmodes that demand minimal or no elastic energy. However, the potential for\\narbitrary construction and reprogramming of metamaterials remains largely\\nunrealized, primarily due to significant challenges in qualitatively\\ntransforming zero modes within the confines of existing metamaterial design\\nframeworks. In this work, we show a method for explicitly defining and in situ\\nreprogramming zero modes of two-dimensional extremal materials by employing\\nstraight-line mechanisms (SLMs) and planar symmetry, which prescribe and\\ncoordinate the zero modes, respectively. We design, test, and reprogram\\ncentimeter-scale isotropic, orthotropic, and chiral extremal materials by\\nreorienting the SLMs in place, enabling these materials to smoothly and\\nreversibly interpolate between extremal modalities (e.g., unimode to bimode)\\nand material properties (e.g., negative to positive Poisson's ratios) without\\nchanging the metamaterial's global structure. Our methodology provides a\\nstraightforward and explicit strategy for the design and tuning of all\\nvarieties of two-dimensional extremal materials, enabling arbitrary and dynamic\\nmechanical metamaterial construction to completely cover the gamut of elastic\\nproperties.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机械极值材料是一类存在于弹性理论边界的超材料,具有非凡的能力,可以通过利用机械零模(只需极少或无需弹性能量的变形模式)来设计任何想要的弹性行为。然而,超材料任意构建和重新编程的潜力在很大程度上仍未实现,这主要是由于在现有超材料设计框架内定性地转换零模所面临的巨大挑战。在这项工作中,我们展示了一种方法,通过采用直线机制(SLM)和平面对称性,分别规定和协调二维极值材料的零模,从而明确定义并在现场编程零模。我们设计、测试和重新编程厘米尺度的各向同性、正交和手性极值材料,方法是调整 SLM 的方向,使这些材料能够在不改变超材料整体结构的情况下,在极值模态(如从单模态到双模态)和材料特性(如从负泊松比到正泊松比)之间进行平滑和可逆的插值。我们的方法为二维极值材料所有品种的设计和调谐提供了直接而明确的策略,使任意和动态的机械超材料结构能够完全涵盖各种弹性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Reprogrammability of Zero Modes in 2D Materials from a Single Element
Mechanical extremal materials, a class of metamaterials that exist at the bounds of elastic theory, possess the extraordinary capability to engineer any desired elastic behavior by harnessing mechanical zero modes -- deformation modes that demand minimal or no elastic energy. However, the potential for arbitrary construction and reprogramming of metamaterials remains largely unrealized, primarily due to significant challenges in qualitatively transforming zero modes within the confines of existing metamaterial design frameworks. In this work, we show a method for explicitly defining and in situ reprogramming zero modes of two-dimensional extremal materials by employing straight-line mechanisms (SLMs) and planar symmetry, which prescribe and coordinate the zero modes, respectively. We design, test, and reprogram centimeter-scale isotropic, orthotropic, and chiral extremal materials by reorienting the SLMs in place, enabling these materials to smoothly and reversibly interpolate between extremal modalities (e.g., unimode to bimode) and material properties (e.g., negative to positive Poisson's ratios) without changing the metamaterial's global structure. Our methodology provides a straightforward and explicit strategy for the design and tuning of all varieties of two-dimensional extremal materials, enabling arbitrary and dynamic mechanical metamaterial construction to completely cover the gamut of elastic properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unifying Action Principle for Classical Mechanical Systems Crack Dynamics in Rotating, Initially Stressed Material Strips: A Mathematical Approach Effective Youngs Modulus of Two-Phase Elastic Composites by Repeated Isostrain and Isostress Constructions and Arithmetic-Geometric Mean The principle of minimum virtual work and its application in bridge engineering Observation of exceptional points in a spherical open elastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1