通过总电流消耗监控提高系统级辐射测试期间的系统可观察性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-05 DOI:10.1109/TNS.2024.3424201
Ivan Slipukhin;Andrea Coronetti;Rubén García Alía;Frédéric Saigné;Jérôme Boch;Luigi Dilillo;Ygor Q. Aguiar;Carlo Cazzaniga;Maria Kastriotou;Torran Dodd
{"title":"通过总电流消耗监控提高系统级辐射测试期间的系统可观察性","authors":"Ivan Slipukhin;Andrea Coronetti;Rubén García Alía;Frédéric Saigné;Jérôme Boch;Luigi Dilillo;Ygor Q. Aguiar;Carlo Cazzaniga;Maria Kastriotou;Torran Dodd","doi":"10.1109/TNS.2024.3424201","DOIUrl":null,"url":null,"abstract":"System-level testing of electronics is an affordable method of assessment of the performance of complete electronic systems designed for applications in the radiation environment. Compared to component-level testing, system-level test offers a much smaller degree of observability about the performance of particular system elements. The information received during the irradiation of a system might be therefore not sufficient for the identification of every system under test (SUT) malfunction. As a consequence, no action might be taken to recover the system operation while certain parts of its functionality would be lost due to the radiation-induced effects. This can lead to the incorrect execution of the system-level test and improper conclusions about radiation-induced effects. The present paper demonstrates a method allowing an efficient identification of system-level failures based on the system total current consumption monitoring. The proposed technique can be easily implemented with common instrumentation and at the same time provides valuable feedback on SUT operation. The retrieved current consumption information can be used to identify system failures that may be not observable through the communication channels that are by default included in the tested setup. Furthermore, the posttest analysis can be performed on the collected data to investigate the SUT condition along the complete timeline of its irradiation. The verification of the proposed method was performed during the qualification test of a system designed for applications at the high-energy particle accelerator facility.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587020","citationCount":"0","resultStr":"{\"title\":\"Enhancement of System Observability During System-Level Radiation Testing Through Total Current Consumption Monitoring\",\"authors\":\"Ivan Slipukhin;Andrea Coronetti;Rubén García Alía;Frédéric Saigné;Jérôme Boch;Luigi Dilillo;Ygor Q. Aguiar;Carlo Cazzaniga;Maria Kastriotou;Torran Dodd\",\"doi\":\"10.1109/TNS.2024.3424201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System-level testing of electronics is an affordable method of assessment of the performance of complete electronic systems designed for applications in the radiation environment. Compared to component-level testing, system-level test offers a much smaller degree of observability about the performance of particular system elements. The information received during the irradiation of a system might be therefore not sufficient for the identification of every system under test (SUT) malfunction. As a consequence, no action might be taken to recover the system operation while certain parts of its functionality would be lost due to the radiation-induced effects. This can lead to the incorrect execution of the system-level test and improper conclusions about radiation-induced effects. The present paper demonstrates a method allowing an efficient identification of system-level failures based on the system total current consumption monitoring. The proposed technique can be easily implemented with common instrumentation and at the same time provides valuable feedback on SUT operation. The retrieved current consumption information can be used to identify system failures that may be not observable through the communication channels that are by default included in the tested setup. Furthermore, the posttest analysis can be performed on the collected data to investigate the SUT condition along the complete timeline of its irradiation. The verification of the proposed method was performed during the qualification test of a system designed for applications at the high-energy particle accelerator facility.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10587020/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10587020/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子产品的系统级测试是评估为辐射环境应用而设计的完整电子系统性能的一种经济实惠的方法。与元件级测试相比,系统级测试对特定系统元件性能的可观测性要小得多。因此,系统辐照期间获得的信息可能不足以识别每个被测系统(SUT)的故障。因此,可能不会采取任何措施来恢复系统运行,而系统的某些部分功能却会因辐射引起的影响而丧失。这可能会导致系统级测试的错误执行,以及对辐射诱发效应得出不恰当的结论。本文展示了一种基于系统总电流消耗监测的系统级故障有效识别方法。所提出的技术可以通过普通仪器轻松实现,同时还能提供有关 SUT 运行情况的宝贵反馈。检索到的电流消耗信息可用于识别系统故障,这些故障可能无法通过通信通道观测到,而通信通道默认包含在测试设置中。此外,还可以对收集到的数据进行测试后分析,以调查 SUT 在整个辐照时间段内的状况。在对一个为高能粒子加速器应用而设计的系统进行鉴定测试时,对所提出的方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of System Observability During System-Level Radiation Testing Through Total Current Consumption Monitoring
System-level testing of electronics is an affordable method of assessment of the performance of complete electronic systems designed for applications in the radiation environment. Compared to component-level testing, system-level test offers a much smaller degree of observability about the performance of particular system elements. The information received during the irradiation of a system might be therefore not sufficient for the identification of every system under test (SUT) malfunction. As a consequence, no action might be taken to recover the system operation while certain parts of its functionality would be lost due to the radiation-induced effects. This can lead to the incorrect execution of the system-level test and improper conclusions about radiation-induced effects. The present paper demonstrates a method allowing an efficient identification of system-level failures based on the system total current consumption monitoring. The proposed technique can be easily implemented with common instrumentation and at the same time provides valuable feedback on SUT operation. The retrieved current consumption information can be used to identify system failures that may be not observable through the communication channels that are by default included in the tested setup. Furthermore, the posttest analysis can be performed on the collected data to investigate the SUT condition along the complete timeline of its irradiation. The verification of the proposed method was performed during the qualification test of a system designed for applications at the high-energy particle accelerator facility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1