Samir Hamadache, Yu K Huang, Adam Shedeed, Aqil Syed, Bogumil J Karas
{"title":"删除 HindIIR 和 HindIIIR 可改善通过电穿孔向流感嗜血杆菌 Rd 转移 DNA 的效果","authors":"Samir Hamadache, Yu K Huang, Adam Shedeed, Aqil Syed, Bogumil J Karas","doi":"10.1101/2024.07.09.602704","DOIUrl":null,"url":null,"abstract":"Haemophilus influenzae is a bacterial species of interest for its medical relevance and utility as a model system. Despite its role in several landmark molecular and synthetic biology studies, H. influenzae remains underexplored as a potential chassis organism. The limited availability of reliable and convenient transformation methods and genetic tools for H. influenzae are obstacles to this end. However, a strain of H. influenzae Rd KW20 lacking the type II restriction endonucleases HindII and HindIII has previously been developed. Here, we show that this strain is more readily transformable by electroporation than wild-type Rd KW20. We also developed a series of multi-host plasmids carrying antibiotic selection and fluorescent visual markers based on the pSU20 vector. The availability of H. influenzae ΔHindII/III, paired with the electroporation method and plasmids presented here, will promote the exploration of H. influenzae as a host organism for synthetic biology applications.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deletion of HindIIR and HindIIIR improves DNA transfer via electroporation to Haemophilus influenzae Rd\",\"authors\":\"Samir Hamadache, Yu K Huang, Adam Shedeed, Aqil Syed, Bogumil J Karas\",\"doi\":\"10.1101/2024.07.09.602704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haemophilus influenzae is a bacterial species of interest for its medical relevance and utility as a model system. Despite its role in several landmark molecular and synthetic biology studies, H. influenzae remains underexplored as a potential chassis organism. The limited availability of reliable and convenient transformation methods and genetic tools for H. influenzae are obstacles to this end. However, a strain of H. influenzae Rd KW20 lacking the type II restriction endonucleases HindII and HindIII has previously been developed. Here, we show that this strain is more readily transformable by electroporation than wild-type Rd KW20. We also developed a series of multi-host plasmids carrying antibiotic selection and fluorescent visual markers based on the pSU20 vector. The availability of H. influenzae ΔHindII/III, paired with the electroporation method and plasmids presented here, will promote the exploration of H. influenzae as a host organism for synthetic biology applications.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.09.602704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.09.602704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
流感嗜血杆菌(Haemophilus influenzae)是一种具有医学意义和模型系统用途的细菌。尽管流感嗜血杆菌在一些具有里程碑意义的分子和合成生物学研究中发挥了重要作用,但作为一种潜在的底盘生物,流感嗜血杆菌仍未得到充分开发。用于流感嗜血杆菌的可靠、方便的转化方法和遗传工具有限,是实现这一目标的障碍。不过,此前已经开发出了一株缺乏 II 型限制性内切酶 HindII 和 HindIII 的流感杆菌 Rd KW20。在这里,我们发现这种菌株比野生型 Rd KW20 更容易通过电穿孔进行转化。我们还在 pSU20 载体的基础上开发了一系列携带抗生素选择和荧光可视标记的多宿主质粒。H. influenzae ΔHindII/III的可用性,加上本文介绍的电穿孔方法和质粒,将促进将 H. influenzae 作为宿主生物用于合成生物学应用的探索。
Deletion of HindIIR and HindIIIR improves DNA transfer via electroporation to Haemophilus influenzae Rd
Haemophilus influenzae is a bacterial species of interest for its medical relevance and utility as a model system. Despite its role in several landmark molecular and synthetic biology studies, H. influenzae remains underexplored as a potential chassis organism. The limited availability of reliable and convenient transformation methods and genetic tools for H. influenzae are obstacles to this end. However, a strain of H. influenzae Rd KW20 lacking the type II restriction endonucleases HindII and HindIII has previously been developed. Here, we show that this strain is more readily transformable by electroporation than wild-type Rd KW20. We also developed a series of multi-host plasmids carrying antibiotic selection and fluorescent visual markers based on the pSU20 vector. The availability of H. influenzae ΔHindII/III, paired with the electroporation method and plasmids presented here, will promote the exploration of H. influenzae as a host organism for synthetic biology applications.