{"title":"用 PCD 刀具在全烧结氧化锆陶瓷上螺旋铣削小孔","authors":"Jinpeng He, Xiang Cheng, Junfeng Zhang, Chuanzhi Luo, Guangming Zheng, Yang Li, Mingze Tang","doi":"10.3103/S1063457624030043","DOIUrl":null,"url":null,"abstract":"<p>Fully-sintered zirconia ceramic (ZrO<sub>2</sub>) is a typical hard-to-machine material, and fabricating small holes in this material with high precision remains a challenging task. In this study, the PCD tools and helical milling process are used to investigate this problem. First, a finite element model is established, and cutting simulations with variable thickness are carried out to identify the effect of axial depth of cut on cutting force and surface quality. The range of milling parameters for single-factor experiments is also preliminarily determined. Second, taking the milling force (<i>F</i>) as the evaluation index, single-factor experiments of small hole helical milling are carried out using a PCD tools to determine the range of milling parameters (spindle speed <i>n</i>, feed per tooth <i>f</i><sub>z</sub> and axial depth of cut <i>a</i><sub>p</sub>) for orthogonal experiments. Then, orthogonal experiments are carried out, with inner hole surface roughness (<i>R</i><sub>a</sub>) and crack width at the hole entrance (Δ<sub><i>w</i></sub>) taken as the evaluation indexes of machining effectiveness. The rake face wear band width (<i>V</i><sub>A</sub>) and the flank face wear band width (<i>V</i><sub>B</sub>) are taken as the evaluation indexes of the PCD milling cutter wear. Through nonlinear regression analysis and the range analysis are performed to construct nonlinear models and obtain the influence laws of milling parameters for <i>R</i><sub>a</sub>, Δ<sub><i>w</i></sub>, <i>V</i><sub>A</sub> and <i>V</i><sub>B</sub> evaluation indexes, respectively. Finally, the optimal combination of parameters obtained from the analysis is analyzed for small hole optimization experiments, obtaining better <i>R</i><sub>a</sub>, narrower Δ<sub><i>w</i></sub>, and longer tool service life. The obtained results provide several technical guidelines for milling small holes in Fully-sintered zirconia ceramics with PCD tools.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 3","pages":"221 - 237"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helical Milling of Small Holes in Fully-Sintered Zirconia Ceramic with PCD Tools\",\"authors\":\"Jinpeng He, Xiang Cheng, Junfeng Zhang, Chuanzhi Luo, Guangming Zheng, Yang Li, Mingze Tang\",\"doi\":\"10.3103/S1063457624030043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fully-sintered zirconia ceramic (ZrO<sub>2</sub>) is a typical hard-to-machine material, and fabricating small holes in this material with high precision remains a challenging task. In this study, the PCD tools and helical milling process are used to investigate this problem. First, a finite element model is established, and cutting simulations with variable thickness are carried out to identify the effect of axial depth of cut on cutting force and surface quality. The range of milling parameters for single-factor experiments is also preliminarily determined. Second, taking the milling force (<i>F</i>) as the evaluation index, single-factor experiments of small hole helical milling are carried out using a PCD tools to determine the range of milling parameters (spindle speed <i>n</i>, feed per tooth <i>f</i><sub>z</sub> and axial depth of cut <i>a</i><sub>p</sub>) for orthogonal experiments. Then, orthogonal experiments are carried out, with inner hole surface roughness (<i>R</i><sub>a</sub>) and crack width at the hole entrance (Δ<sub><i>w</i></sub>) taken as the evaluation indexes of machining effectiveness. The rake face wear band width (<i>V</i><sub>A</sub>) and the flank face wear band width (<i>V</i><sub>B</sub>) are taken as the evaluation indexes of the PCD milling cutter wear. Through nonlinear regression analysis and the range analysis are performed to construct nonlinear models and obtain the influence laws of milling parameters for <i>R</i><sub>a</sub>, Δ<sub><i>w</i></sub>, <i>V</i><sub>A</sub> and <i>V</i><sub>B</sub> evaluation indexes, respectively. Finally, the optimal combination of parameters obtained from the analysis is analyzed for small hole optimization experiments, obtaining better <i>R</i><sub>a</sub>, narrower Δ<sub><i>w</i></sub>, and longer tool service life. The obtained results provide several technical guidelines for milling small holes in Fully-sintered zirconia ceramics with PCD tools.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 3\",\"pages\":\"221 - 237\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624030043\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624030043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Helical Milling of Small Holes in Fully-Sintered Zirconia Ceramic with PCD Tools
Fully-sintered zirconia ceramic (ZrO2) is a typical hard-to-machine material, and fabricating small holes in this material with high precision remains a challenging task. In this study, the PCD tools and helical milling process are used to investigate this problem. First, a finite element model is established, and cutting simulations with variable thickness are carried out to identify the effect of axial depth of cut on cutting force and surface quality. The range of milling parameters for single-factor experiments is also preliminarily determined. Second, taking the milling force (F) as the evaluation index, single-factor experiments of small hole helical milling are carried out using a PCD tools to determine the range of milling parameters (spindle speed n, feed per tooth fz and axial depth of cut ap) for orthogonal experiments. Then, orthogonal experiments are carried out, with inner hole surface roughness (Ra) and crack width at the hole entrance (Δw) taken as the evaluation indexes of machining effectiveness. The rake face wear band width (VA) and the flank face wear band width (VB) are taken as the evaluation indexes of the PCD milling cutter wear. Through nonlinear regression analysis and the range analysis are performed to construct nonlinear models and obtain the influence laws of milling parameters for Ra, Δw, VA and VB evaluation indexes, respectively. Finally, the optimal combination of parameters obtained from the analysis is analyzed for small hole optimization experiments, obtaining better Ra, narrower Δw, and longer tool service life. The obtained results provide several technical guidelines for milling small holes in Fully-sintered zirconia ceramics with PCD tools.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.