{"title":"关于紧聚焦光涡旋束的轨道诱导自旋密度:椭圆度和螺旋度","authors":"Kayn A Forbes","doi":"10.1088/2040-8986/ad5f40","DOIUrl":null,"url":null,"abstract":"It has recently been established that a linearly-polarized optical vortex possesses spin angular momentum density in the direction of propagation (longitudinal spin) under tight-focusing. The helicity of light has long been associated with longitudinal spin angular momentum. Here we show that the longitudinal spin density of linearly-polarized vortices is anomalous because it has no associated helicity. It was also recently determined that the polarization-independent helicity of tightly-focused optical vortices is associated with their transverse spin momentum density. The key finding of this work is the fact that, in general, longitudinal spin can not necessarily be associated with helicity, and transverse spin is in general not associated with a zero helicity, and such extraordinary behaviour manifests most clearly for optical vortices under non-paraxial conditions.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the orbit-induced spin density of tightly focused optical vortex beams: ellipticity and helicity\",\"authors\":\"Kayn A Forbes\",\"doi\":\"10.1088/2040-8986/ad5f40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has recently been established that a linearly-polarized optical vortex possesses spin angular momentum density in the direction of propagation (longitudinal spin) under tight-focusing. The helicity of light has long been associated with longitudinal spin angular momentum. Here we show that the longitudinal spin density of linearly-polarized vortices is anomalous because it has no associated helicity. It was also recently determined that the polarization-independent helicity of tightly-focused optical vortices is associated with their transverse spin momentum density. The key finding of this work is the fact that, in general, longitudinal spin can not necessarily be associated with helicity, and transverse spin is in general not associated with a zero helicity, and such extraordinary behaviour manifests most clearly for optical vortices under non-paraxial conditions.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad5f40\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad5f40","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
On the orbit-induced spin density of tightly focused optical vortex beams: ellipticity and helicity
It has recently been established that a linearly-polarized optical vortex possesses spin angular momentum density in the direction of propagation (longitudinal spin) under tight-focusing. The helicity of light has long been associated with longitudinal spin angular momentum. Here we show that the longitudinal spin density of linearly-polarized vortices is anomalous because it has no associated helicity. It was also recently determined that the polarization-independent helicity of tightly-focused optical vortices is associated with their transverse spin momentum density. The key finding of this work is the fact that, in general, longitudinal spin can not necessarily be associated with helicity, and transverse spin is in general not associated with a zero helicity, and such extraordinary behaviour manifests most clearly for optical vortices under non-paraxial conditions.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.