{"title":"QEA-QCNN:基于量子进化的量子卷积神经网络架构优化","authors":"Yangyang Li, Xiaobin Hao, Guanlong Liu, Ronghua Shang, Licheng Jiao","doi":"10.1007/s12293-024-00417-3","DOIUrl":null,"url":null,"abstract":"<p>Quantum neural network (QNN) is a research orientation that combines quantum computing and machine learning. It has the potential to solve the bottleneck problem of shortage of computing resource in deep learning, and is expected to become the first practical application scheme that demonstrate application level quantum advantages on current Noise Intermediate scale Quantum (NISQ) devices. However, limited by the current scale of NISQ devices, QNNs have fewer quantum bits and quantum circuits cannot be too deep. Currently, there is no clear design strategy for the architecture of QNN. Designing QNN architectures arbitrarily not only has high circuit complexity but also often poor network performance. Similar to classical convolutional neural network, in this paper, a quantum evolution-based optimization algorithm is proposed for design of quantum convolutional neural network (QCNN) architecture. The design of QNN architecture is viewed as a combinatorial optimization problem, and the quantum evolution algorithm is used to adaptively design the QCNN architecture with its global search ability in a large discrete search space. Comprehensive experimental results indicate that the proposed method can effectively reduce the complexity of QCNN circuits, reduce the difficulty of deploying quantum circuits, and further improve the expressibility of QCNN.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"149 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QEA-QCNN: optimization of quantum convolutional neural network architecture based on quantum evolution\",\"authors\":\"Yangyang Li, Xiaobin Hao, Guanlong Liu, Ronghua Shang, Licheng Jiao\",\"doi\":\"10.1007/s12293-024-00417-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum neural network (QNN) is a research orientation that combines quantum computing and machine learning. It has the potential to solve the bottleneck problem of shortage of computing resource in deep learning, and is expected to become the first practical application scheme that demonstrate application level quantum advantages on current Noise Intermediate scale Quantum (NISQ) devices. However, limited by the current scale of NISQ devices, QNNs have fewer quantum bits and quantum circuits cannot be too deep. Currently, there is no clear design strategy for the architecture of QNN. Designing QNN architectures arbitrarily not only has high circuit complexity but also often poor network performance. Similar to classical convolutional neural network, in this paper, a quantum evolution-based optimization algorithm is proposed for design of quantum convolutional neural network (QCNN) architecture. The design of QNN architecture is viewed as a combinatorial optimization problem, and the quantum evolution algorithm is used to adaptively design the QCNN architecture with its global search ability in a large discrete search space. Comprehensive experimental results indicate that the proposed method can effectively reduce the complexity of QCNN circuits, reduce the difficulty of deploying quantum circuits, and further improve the expressibility of QCNN.</p>\",\"PeriodicalId\":48780,\"journal\":{\"name\":\"Memetic Computing\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memetic Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00417-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00417-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
QEA-QCNN: optimization of quantum convolutional neural network architecture based on quantum evolution
Quantum neural network (QNN) is a research orientation that combines quantum computing and machine learning. It has the potential to solve the bottleneck problem of shortage of computing resource in deep learning, and is expected to become the first practical application scheme that demonstrate application level quantum advantages on current Noise Intermediate scale Quantum (NISQ) devices. However, limited by the current scale of NISQ devices, QNNs have fewer quantum bits and quantum circuits cannot be too deep. Currently, there is no clear design strategy for the architecture of QNN. Designing QNN architectures arbitrarily not only has high circuit complexity but also often poor network performance. Similar to classical convolutional neural network, in this paper, a quantum evolution-based optimization algorithm is proposed for design of quantum convolutional neural network (QCNN) architecture. The design of QNN architecture is viewed as a combinatorial optimization problem, and the quantum evolution algorithm is used to adaptively design the QCNN architecture with its global search ability in a large discrete search space. Comprehensive experimental results indicate that the proposed method can effectively reduce the complexity of QCNN circuits, reduce the difficulty of deploying quantum circuits, and further improve the expressibility of QCNN.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.