Vanessa Pilati, María Salvador, Leyre Bei Fraile, José Luis Marqués-Fernández, Franciscarlos Gomes da Silva, Mona Fadel, Ricardo López Antón, María del Puerto Morales, José Carlos Martinez-García and Montserrat Rivas
{"title":"锰铁氧体纳米粒子有望成为侧流检测中射频感应检测和定量的磁性标签","authors":"Vanessa Pilati, María Salvador, Leyre Bei Fraile, José Luis Marqués-Fernández, Franciscarlos Gomes da Silva, Mona Fadel, Ricardo López Antón, María del Puerto Morales, José Carlos Martinez-García and Montserrat Rivas","doi":"10.1039/D4NA00445K","DOIUrl":null,"url":null,"abstract":"<p >Lateral flow assays are low-cost point-of-care devices that are stable, easy to use, and provide quick results. They are mostly used as qualitative screening tests to detect biomarkers for several diseases. Quantification of the biomarkers is sometimes desirable but challenging to achieve. Magnetic nanoparticles can be used as tags, providing both visual and magnetic signals that can be detected and quantified by magnetic sensors. In the present work, we synthesized superparamagnetic MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles using the hydrothermal coprecipitation route. MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> presents low magnetic anisotropy and high saturation magnetization, resulting in larger initial magnetic susceptibility, which is crucial for optimizing the signal in inductive sensors. We functionalized the coprecipitated nanoparticles with citric acid to achieve colloidal stability in a neutral pH and to provide carboxyl groups to their surface to bioconjugate with biomolecules, such as proteins and antibodies. The nanomaterials were characterized by several techniques, and we correlated their magnetic properties with their sensitivity and resolution for magnetic detection in radiofrequency inductive sensors. We considered the NeutrAvidin/biotin model of biorecognition to explore their potential as magnetic labels in lateral flow assays. Our results show that MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles are more sensitive to inductive detection than magnetite nanoparticles, the most used nanotags in magnetic lateral flow assays. These nanoparticles present high potential as magnetic tags for the development of sensitive lateral flow immunoassays for detecting and quantifying biomarkers.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00445k?page=search","citationCount":"0","resultStr":"{\"title\":\"Mn-ferrite nanoparticles as promising magnetic tags for radiofrequency inductive detection and quantification in lateral flow assays†\",\"authors\":\"Vanessa Pilati, María Salvador, Leyre Bei Fraile, José Luis Marqués-Fernández, Franciscarlos Gomes da Silva, Mona Fadel, Ricardo López Antón, María del Puerto Morales, José Carlos Martinez-García and Montserrat Rivas\",\"doi\":\"10.1039/D4NA00445K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lateral flow assays are low-cost point-of-care devices that are stable, easy to use, and provide quick results. They are mostly used as qualitative screening tests to detect biomarkers for several diseases. Quantification of the biomarkers is sometimes desirable but challenging to achieve. Magnetic nanoparticles can be used as tags, providing both visual and magnetic signals that can be detected and quantified by magnetic sensors. In the present work, we synthesized superparamagnetic MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles using the hydrothermal coprecipitation route. MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> presents low magnetic anisotropy and high saturation magnetization, resulting in larger initial magnetic susceptibility, which is crucial for optimizing the signal in inductive sensors. We functionalized the coprecipitated nanoparticles with citric acid to achieve colloidal stability in a neutral pH and to provide carboxyl groups to their surface to bioconjugate with biomolecules, such as proteins and antibodies. The nanomaterials were characterized by several techniques, and we correlated their magnetic properties with their sensitivity and resolution for magnetic detection in radiofrequency inductive sensors. We considered the NeutrAvidin/biotin model of biorecognition to explore their potential as magnetic labels in lateral flow assays. Our results show that MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles are more sensitive to inductive detection than magnetite nanoparticles, the most used nanotags in magnetic lateral flow assays. These nanoparticles present high potential as magnetic tags for the development of sensitive lateral flow immunoassays for detecting and quantifying biomarkers.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00445k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00445k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00445k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mn-ferrite nanoparticles as promising magnetic tags for radiofrequency inductive detection and quantification in lateral flow assays†
Lateral flow assays are low-cost point-of-care devices that are stable, easy to use, and provide quick results. They are mostly used as qualitative screening tests to detect biomarkers for several diseases. Quantification of the biomarkers is sometimes desirable but challenging to achieve. Magnetic nanoparticles can be used as tags, providing both visual and magnetic signals that can be detected and quantified by magnetic sensors. In the present work, we synthesized superparamagnetic MnFe2O4 nanoparticles using the hydrothermal coprecipitation route. MnFe2O4 presents low magnetic anisotropy and high saturation magnetization, resulting in larger initial magnetic susceptibility, which is crucial for optimizing the signal in inductive sensors. We functionalized the coprecipitated nanoparticles with citric acid to achieve colloidal stability in a neutral pH and to provide carboxyl groups to their surface to bioconjugate with biomolecules, such as proteins and antibodies. The nanomaterials were characterized by several techniques, and we correlated their magnetic properties with their sensitivity and resolution for magnetic detection in radiofrequency inductive sensors. We considered the NeutrAvidin/biotin model of biorecognition to explore their potential as magnetic labels in lateral flow assays. Our results show that MnFe2O4 nanoparticles are more sensitive to inductive detection than magnetite nanoparticles, the most used nanotags in magnetic lateral flow assays. These nanoparticles present high potential as magnetic tags for the development of sensitive lateral flow immunoassays for detecting and quantifying biomarkers.