Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal
{"title":"实现信息学驱动的新型核废料形式设计","authors":"Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal","doi":"10.1039/D4DD00096J","DOIUrl":null,"url":null,"abstract":"<p >Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1450-1466"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00096j?page=search","citationCount":"0","resultStr":"{\"title\":\"Towards informatics-driven design of nuclear waste forms\",\"authors\":\"Vinay I. Hegde, Miroslava Peterson, Sarah I. Allec, Xiaonan Lu, Thiruvillamalai Mahadevan, Thanh Nguyen, Jayani Kalahe, Jared Oshiro, Robert J. Seffens, Ethan K. Nickerson, Jincheng Du, Brian J. Riley, John D. Vienna and James E. Saal\",\"doi\":\"10.1039/D4DD00096J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 8\",\"pages\":\" 1450-1466\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00096j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00096j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00096j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards informatics-driven design of nuclear waste forms
Informatics-driven approaches, such as machine learning and sequential experimental design, have shown the potential to drastically impact next-generation materials discovery and design. In this perspective, we present a few guiding principles for applying informatics-based methods towards the design of novel nuclear waste forms. We advocate for adopting a system design approach, and describe the effective usage of data-driven methods in every stage of such a design process. We demonstrate how this approach can optimally leverage physics-based simulations, machine learning surrogates, and experimental synthesis and characterization, within a feedback-driven closed-loop sequential learning framework. We discuss the importance of incorporating domain knowledge into the representation of materials, the construction and curation of datasets, the development of predictive property models, and the design and execution of experiments. We illustrate the application of this approach by successfully designing and validating Na- and Nd-containing phosphate-based ceramic waste forms. Finally, we discuss open challenges in such informatics-driven workflows and present an outlook for their widespread application for the cleanup of nuclear wastes.