{"title":"通过张量线性判别分析进行多媒体分类","authors":"Shih-Yu Chang;Hsiao-Chun Wu;Kun Yan;Scott Chih-Hao Huang;Yiyan Wu","doi":"10.1109/TBC.2024.3417342","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is a well-known feature-extraction technique for data analytic and pattern classification. As the dimensionality of multimedia data has increased in this big era, it is often to characterize data by tensors. Over the past two decades, researchers have thus explored to extend LDA to the general tensor space, especially in two common ways: LDA of tensors using tensor decomposition methods (by conversion of tensors to matrices) and LDA of tensors built upon the T-product. However, both of the aforementioned approaches have restrictions thereby. A critical problem about how to carry out LDA of arbitrary scatter tensors based on the Einstein product still remains unsolved by the existing methods. Therefore, we propose a novel tensor LDA (a.k.a. TLDA) approach, which can carry out the LDA of arbitrary-dimensional scatter-tensors without any need of tensor decomposition. Besides, for reducing the computation time, we also design a parallel paradigm to execute our proposed TLDA in this work. Numerical experiments conducted over real multimedia data demonstrate the efficacy of our proposed new TLDA in terms of classification accuracy. Moreover, the comparison of the classification accuracies, computational-complexities, and memory-complexities of our proposed novel TLDA scheme and other existing tensor-based LDA methods is made. By leveraging TLDA for high-dimensional feature extraction, segmentation, and user-item interaction data processing, future multimedia recommendation systems can facilitate more accurate, engaging, and satisfactory user experience over the Internet.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 4","pages":"1139-1152"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimedia Classification via Tensor Linear Discriminant Analysis\",\"authors\":\"Shih-Yu Chang;Hsiao-Chun Wu;Kun Yan;Scott Chih-Hao Huang;Yiyan Wu\",\"doi\":\"10.1109/TBC.2024.3417342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant analysis (LDA) is a well-known feature-extraction technique for data analytic and pattern classification. As the dimensionality of multimedia data has increased in this big era, it is often to characterize data by tensors. Over the past two decades, researchers have thus explored to extend LDA to the general tensor space, especially in two common ways: LDA of tensors using tensor decomposition methods (by conversion of tensors to matrices) and LDA of tensors built upon the T-product. However, both of the aforementioned approaches have restrictions thereby. A critical problem about how to carry out LDA of arbitrary scatter tensors based on the Einstein product still remains unsolved by the existing methods. Therefore, we propose a novel tensor LDA (a.k.a. TLDA) approach, which can carry out the LDA of arbitrary-dimensional scatter-tensors without any need of tensor decomposition. Besides, for reducing the computation time, we also design a parallel paradigm to execute our proposed TLDA in this work. Numerical experiments conducted over real multimedia data demonstrate the efficacy of our proposed new TLDA in terms of classification accuracy. Moreover, the comparison of the classification accuracies, computational-complexities, and memory-complexities of our proposed novel TLDA scheme and other existing tensor-based LDA methods is made. By leveraging TLDA for high-dimensional feature extraction, segmentation, and user-item interaction data processing, future multimedia recommendation systems can facilitate more accurate, engaging, and satisfactory user experience over the Internet.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 4\",\"pages\":\"1139-1152\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10588952/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10588952/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multimedia Classification via Tensor Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a well-known feature-extraction technique for data analytic and pattern classification. As the dimensionality of multimedia data has increased in this big era, it is often to characterize data by tensors. Over the past two decades, researchers have thus explored to extend LDA to the general tensor space, especially in two common ways: LDA of tensors using tensor decomposition methods (by conversion of tensors to matrices) and LDA of tensors built upon the T-product. However, both of the aforementioned approaches have restrictions thereby. A critical problem about how to carry out LDA of arbitrary scatter tensors based on the Einstein product still remains unsolved by the existing methods. Therefore, we propose a novel tensor LDA (a.k.a. TLDA) approach, which can carry out the LDA of arbitrary-dimensional scatter-tensors without any need of tensor decomposition. Besides, for reducing the computation time, we also design a parallel paradigm to execute our proposed TLDA in this work. Numerical experiments conducted over real multimedia data demonstrate the efficacy of our proposed new TLDA in terms of classification accuracy. Moreover, the comparison of the classification accuracies, computational-complexities, and memory-complexities of our proposed novel TLDA scheme and other existing tensor-based LDA methods is made. By leveraging TLDA for high-dimensional feature extraction, segmentation, and user-item interaction data processing, future multimedia recommendation systems can facilitate more accurate, engaging, and satisfactory user experience over the Internet.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”