{"title":"将木薯浆生物转化为有价值的挥发性脂肪酸,作为可再生且成本低廉的沼气和生物塑料基质的展望","authors":"Alifia Issabella Mulyawati, Benjaphon Suraraksa, Pawinee Chaiprasert","doi":"10.1007/s10924-024-03351-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cassava pulp (CP) generated annually in Thailand has become the major agro-industrial solid waste problem, but its potential for volatile fatty acids (VFAs) production has not been intensively explored. Waste-derived VFAs gained attention due to their broad applications as substrates for biomethane and bioplastic or bio-based chemicals, replacing petrochemical-based ones. This study proposed the next generation of CP waste management for VFAs production as renewable and inexpensive substrates for biogas and bioplastic prospects. A microbial consortium enriched with hydrolytic and acidogenic bacteria (EHA) was used as inoculum seed for anaerobic fermentation of CP to produce VFAs. The stepwise increasing substrate to 5% CP resulted in VFAs yield of up to 0.16 g acetic acid and 0.22 g butyric acids per g of CP added, requiring only 1% of microbial inoculum. Acid-tolerant spore-forming <i>Clostridium</i> dominated the EHA consortium and was easy to maintain during stress conditions. If the annual CP generated is subjected to this proposed waste management system, 0.31 million tons of acetic acid and 0.43 million tons of butyric acid can be produced annually. These VFAs can be further used as mixed VFAs for biomethane and bioplastic production prospects or extracted as a pure VFA and sold to the chemicals market. Moreover, bio-transformation of CP into VFAs through fermentation using the special EHA consortium requires minimum operational cost and produces high-economy products while minimizing greenhouse gas emissions to the atmosphere. This next-generation CP waste utilization will be of good use in the future by contributing to sustainable development goals.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 11","pages":"5965 - 5981"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-transforming Cassava Pulp into Valuable Volatile Fatty Acids as Renewable and Inexpensive Substrates for Biogas and Bioplastic Prospects\",\"authors\":\"Alifia Issabella Mulyawati, Benjaphon Suraraksa, Pawinee Chaiprasert\",\"doi\":\"10.1007/s10924-024-03351-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cassava pulp (CP) generated annually in Thailand has become the major agro-industrial solid waste problem, but its potential for volatile fatty acids (VFAs) production has not been intensively explored. Waste-derived VFAs gained attention due to their broad applications as substrates for biomethane and bioplastic or bio-based chemicals, replacing petrochemical-based ones. This study proposed the next generation of CP waste management for VFAs production as renewable and inexpensive substrates for biogas and bioplastic prospects. A microbial consortium enriched with hydrolytic and acidogenic bacteria (EHA) was used as inoculum seed for anaerobic fermentation of CP to produce VFAs. The stepwise increasing substrate to 5% CP resulted in VFAs yield of up to 0.16 g acetic acid and 0.22 g butyric acids per g of CP added, requiring only 1% of microbial inoculum. Acid-tolerant spore-forming <i>Clostridium</i> dominated the EHA consortium and was easy to maintain during stress conditions. If the annual CP generated is subjected to this proposed waste management system, 0.31 million tons of acetic acid and 0.43 million tons of butyric acid can be produced annually. These VFAs can be further used as mixed VFAs for biomethane and bioplastic production prospects or extracted as a pure VFA and sold to the chemicals market. Moreover, bio-transformation of CP into VFAs through fermentation using the special EHA consortium requires minimum operational cost and produces high-economy products while minimizing greenhouse gas emissions to the atmosphere. This next-generation CP waste utilization will be of good use in the future by contributing to sustainable development goals.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"32 11\",\"pages\":\"5965 - 5981\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03351-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03351-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Bio-transforming Cassava Pulp into Valuable Volatile Fatty Acids as Renewable and Inexpensive Substrates for Biogas and Bioplastic Prospects
Cassava pulp (CP) generated annually in Thailand has become the major agro-industrial solid waste problem, but its potential for volatile fatty acids (VFAs) production has not been intensively explored. Waste-derived VFAs gained attention due to their broad applications as substrates for biomethane and bioplastic or bio-based chemicals, replacing petrochemical-based ones. This study proposed the next generation of CP waste management for VFAs production as renewable and inexpensive substrates for biogas and bioplastic prospects. A microbial consortium enriched with hydrolytic and acidogenic bacteria (EHA) was used as inoculum seed for anaerobic fermentation of CP to produce VFAs. The stepwise increasing substrate to 5% CP resulted in VFAs yield of up to 0.16 g acetic acid and 0.22 g butyric acids per g of CP added, requiring only 1% of microbial inoculum. Acid-tolerant spore-forming Clostridium dominated the EHA consortium and was easy to maintain during stress conditions. If the annual CP generated is subjected to this proposed waste management system, 0.31 million tons of acetic acid and 0.43 million tons of butyric acid can be produced annually. These VFAs can be further used as mixed VFAs for biomethane and bioplastic production prospects or extracted as a pure VFA and sold to the chemicals market. Moreover, bio-transformation of CP into VFAs through fermentation using the special EHA consortium requires minimum operational cost and produces high-economy products while minimizing greenhouse gas emissions to the atmosphere. This next-generation CP waste utilization will be of good use in the future by contributing to sustainable development goals.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.