{"title":"在 COVID-19 数学模型中使用谷歌移动数据的趋势","authors":"Yang Deng, Hefei Lin, Daihai He, Yi Zhao","doi":"10.1186/s13662-024-03816-5","DOIUrl":null,"url":null,"abstract":"<p>Google mobility data has been widely used in COVID-19 mathematical modeling to understand disease transmission dynamics. This review examines the extensive literature on the use of Google mobility data in COVID-19 mathematical modeling. We mainly focus on over a dozen influential studies using Google mobility data in COVID-19 mathematical modeling, including compartmental and metapopulation models. Google mobility data provides valuable insights into mobility changes and interventions. However, challenges persist in fully elucidating transmission dynamics over time, modeling longer time series and accounting for individual-level correlations in mobility patterns, urging the incorporation of diverse datasets for modeling in the post-COVID-19 landscape.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trending on the use of Google mobility data in COVID-19 mathematical models\",\"authors\":\"Yang Deng, Hefei Lin, Daihai He, Yi Zhao\",\"doi\":\"10.1186/s13662-024-03816-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Google mobility data has been widely used in COVID-19 mathematical modeling to understand disease transmission dynamics. This review examines the extensive literature on the use of Google mobility data in COVID-19 mathematical modeling. We mainly focus on over a dozen influential studies using Google mobility data in COVID-19 mathematical modeling, including compartmental and metapopulation models. Google mobility data provides valuable insights into mobility changes and interventions. However, challenges persist in fully elucidating transmission dynamics over time, modeling longer time series and accounting for individual-level correlations in mobility patterns, urging the incorporation of diverse datasets for modeling in the post-COVID-19 landscape.</p>\",\"PeriodicalId\":49245,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-024-03816-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-024-03816-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Trending on the use of Google mobility data in COVID-19 mathematical models
Google mobility data has been widely used in COVID-19 mathematical modeling to understand disease transmission dynamics. This review examines the extensive literature on the use of Google mobility data in COVID-19 mathematical modeling. We mainly focus on over a dozen influential studies using Google mobility data in COVID-19 mathematical modeling, including compartmental and metapopulation models. Google mobility data provides valuable insights into mobility changes and interventions. However, challenges persist in fully elucidating transmission dynamics over time, modeling longer time series and accounting for individual-level correlations in mobility patterns, urging the incorporation of diverse datasets for modeling in the post-COVID-19 landscape.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.