过表达芒果中的 MiAGL1 基因可促进转基因拟南芥开花

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-05 DOI:10.1007/s13562-024-00900-5
Xue-mei Zeng, Xin-hua He, Wen-jing Mo, Hai-xia Yu, Ting-ting Lu, Li-ming Xia, Yi-li Zhang, Jia-wei Zhu, Cong Luo
{"title":"过表达芒果中的 MiAGL1 基因可促进转基因拟南芥开花","authors":"Xue-mei Zeng, Xin-hua He, Wen-jing Mo, Hai-xia Yu, Ting-ting Lu, Li-ming Xia, Yi-li Zhang, Jia-wei Zhu, Cong Luo","doi":"10.1007/s13562-024-00900-5","DOIUrl":null,"url":null,"abstract":"<p><i>MADS-box</i> genes play a vital role in the vegetative and reproductive growth of plants. In this study, a <i>MiAGL1</i> gene was cloned and identified from mango (<i>Mangifera indica</i> L.). The DNA sequence of <i>AGAMOUS-LIKE1</i> (<i>MiAGL1</i>) was 8741 bp in length, including a 723 bp open reading frame and encoding 241 amino acids. <i>MiAGL1</i> belongs to the MADS-box family. This gene was expressed not only in vegetative tissues but also in floral organs, and the highest expression level was found in flowers. <i>MiAGL1</i> was expressed in leaves at different floral developmental stages, but the peak appeared at the floral organ differentiation stage. <i>MiAGL1</i> was present in the cell membrane and nucleus. Ectopic expression of <i>MiAGL1</i> in <i>Arabidopsis</i> resulted in significant early flowering under long-day conditions. Overexpression of <i>MiAGL1</i> resulted in abnormal flowering and silique morphology, such as a decrease or absence of petals, smaller petals, and shorter, bent or distorted capsules. The endogenous <i>Arabidopsis thaliana</i> flowering-related genes <i>FT</i>, <i>AP1</i>, and <i>SEP</i> were significantly upregulated, and <i>AtSVP</i> was downregulated in the transgenic lines. Therefore, our data showed that the <i>MiAGL1</i> gene may play a crucial role in flowering time regulation and floral organ identity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of the MiAGL1 gene from mango promoted flowering in transgenic Arabidopsis\",\"authors\":\"Xue-mei Zeng, Xin-hua He, Wen-jing Mo, Hai-xia Yu, Ting-ting Lu, Li-ming Xia, Yi-li Zhang, Jia-wei Zhu, Cong Luo\",\"doi\":\"10.1007/s13562-024-00900-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>MADS-box</i> genes play a vital role in the vegetative and reproductive growth of plants. In this study, a <i>MiAGL1</i> gene was cloned and identified from mango (<i>Mangifera indica</i> L.). The DNA sequence of <i>AGAMOUS-LIKE1</i> (<i>MiAGL1</i>) was 8741 bp in length, including a 723 bp open reading frame and encoding 241 amino acids. <i>MiAGL1</i> belongs to the MADS-box family. This gene was expressed not only in vegetative tissues but also in floral organs, and the highest expression level was found in flowers. <i>MiAGL1</i> was expressed in leaves at different floral developmental stages, but the peak appeared at the floral organ differentiation stage. <i>MiAGL1</i> was present in the cell membrane and nucleus. Ectopic expression of <i>MiAGL1</i> in <i>Arabidopsis</i> resulted in significant early flowering under long-day conditions. Overexpression of <i>MiAGL1</i> resulted in abnormal flowering and silique morphology, such as a decrease or absence of petals, smaller petals, and shorter, bent or distorted capsules. The endogenous <i>Arabidopsis thaliana</i> flowering-related genes <i>FT</i>, <i>AP1</i>, and <i>SEP</i> were significantly upregulated, and <i>AtSVP</i> was downregulated in the transgenic lines. Therefore, our data showed that the <i>MiAGL1</i> gene may play a crucial role in flowering time regulation and floral organ identity.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00900-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00900-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MADS-box 基因在植物的无性和生殖生长中发挥着重要作用。本研究从芒果(Mangifera indica L.)中克隆并鉴定了一个 MiAGL1 基因。AGAMOUS-LIKE1(MiAGL1)的DNA序列全长8741 bp,包括一个723 bp的开放阅读框,编码241个氨基酸。MiAGL1 属于 MADS-box 家族。该基因不仅在无性组织中表达,在花器官中也有表达,花的表达水平最高。MiAGL1 在叶片的不同花发育阶段均有表达,但在花器官分化阶段出现表达高峰。MiAGL1 存在于细胞膜和细胞核中。在拟南芥中异位表达 MiAGL1 可使拟南芥在长日照条件下显著提早开花。过表达 MiAGL1 会导致开花和蒴果形态异常,如花瓣减少或缺失、花瓣变小、蒴果变短、弯曲或扭曲。在转基因品系中,内源拟南芥开花相关基因FT、AP1和SEP显著上调,AtSVP下调。因此,我们的数据表明,MiAGL1基因可能在花期调控和花器官特征中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of the MiAGL1 gene from mango promoted flowering in transgenic Arabidopsis

MADS-box genes play a vital role in the vegetative and reproductive growth of plants. In this study, a MiAGL1 gene was cloned and identified from mango (Mangifera indica L.). The DNA sequence of AGAMOUS-LIKE1 (MiAGL1) was 8741 bp in length, including a 723 bp open reading frame and encoding 241 amino acids. MiAGL1 belongs to the MADS-box family. This gene was expressed not only in vegetative tissues but also in floral organs, and the highest expression level was found in flowers. MiAGL1 was expressed in leaves at different floral developmental stages, but the peak appeared at the floral organ differentiation stage. MiAGL1 was present in the cell membrane and nucleus. Ectopic expression of MiAGL1 in Arabidopsis resulted in significant early flowering under long-day conditions. Overexpression of MiAGL1 resulted in abnormal flowering and silique morphology, such as a decrease or absence of petals, smaller petals, and shorter, bent or distorted capsules. The endogenous Arabidopsis thaliana flowering-related genes FT, AP1, and SEP were significantly upregulated, and AtSVP was downregulated in the transgenic lines. Therefore, our data showed that the MiAGL1 gene may play a crucial role in flowering time regulation and floral organ identity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1